Towards an Integrated Approach to Collaborative Web Usage

INSTITUT FUR INFORMATIK

Lehr- und Forschungseinheit fir

. ; Ludwig
Programmier- und Modellierungssprachen M avdirriliars —
. . Uniwversitat
OettingenstraBe 67 D-80538 Munchen .
Minchen

Towards an Integrated
Approach to Collaborative
Web Usage

Holger Thomas Wagner
Diplomarbeit

Beginn der Arbeit: 22.07.2002
Abgabe der Arbeit: 12.12.2002

Betreuer: Prof. Dr. Francgois Bry
Dipl.-Inform. Michael Kraus

Towards an Integrated Approach to Collaborative Web Usage

Towards an Integrated Approach to Collaborative Web Usage

Erklarung

Hiermit versichere ich, dass ich diese Diplomarbeit selbstandig verfasst habe. Ich habe
dazu keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

Minchen, den 12. Dezember 2002

Towards an Integrated Approach to Collaborative Web Usage

Towards an Integrated Approach to Collaborative Web Usage 5

Abstract

While certain aspects of collaboration already take place in current usage of
the World Wide Web, no dedicated and integrated system exists to support
this kind of collaboration. Instead, existing means of communication are
used, which is cumbersome in many cases. The present work is an attempt
to develop an integrated approach to collaborative Web usage. The
theoretical backgrounds for such an approach are laid out by the
terminology and a survey of existing work. Relevant concepts are introduced
and an architecture is selected from a variety of options. The feature set for
a prototype is defined and that prototype - called teamXweb is
implemented. An experiment conducted with that prototype is described as
well as a follow-up user survey. Finally, future directions for the approach
are discussed.

Keywords

bookmarks, categorization, collaboration, communication, communities, information
sharing, meta-browser, session history, teamXweb, navigation behavior, Web usage

Availability on the Web

http://www.pms.informatik.uni-
muenchen.de/publikationen/diplomarbeiten/Holger.Wagner/index.html

Note: This work has been optimized for being viewed on the Web. If you need to print
the document, use the PDF version available at the given URI. If you want to read the
document online, use the HTML version also available there.

Towards an Integrated Approach to Collaborative Web Usage

Towards an Integrated Approach to Collaborative Web Usage 7

Acknowledgements

I’d like to express my appreciation for the very helpful, continuous and inspiring
support of my supervisors Dr. Francois Bry and Michael Kraus.

| am very grateful to the following people who helped me conduct the experiment and
user survey in their courses: Dr. Slim Abdennadher, Dr. Stefan Conrad, Dr. Norbert
Eisinger, Tim Furche, Tobias Kiesling, Dr. Dr. Castulus Kolo, Dr. Hans Jirgen Ohlbach,
Dan Olteanu, Sebastian Schaffert.

Many thanks to Martin Josko, for installing Tomcat at a server at the University of
Munich and obtaining an academic license of Together Control Center, and to Robert
Hofer for setting up a project server for the prototype.

For the navigation bar and teamXweb logo, many thanks to Kernzeit GmbH, in
particular Robert Erb - you made teamXweb look cool!

Furthermore, I'd like to thank all the people who participated in the field test and
answered the questionnaires, in particular those who gave me feedback with general
comments, bug reports and feature requests. In particular, | appreciated very much
the conversations with Sacha Berger and Felix Weigel, who reported a lot of bugs and
gave me many suggestions on how to improve the system.

Last but not least, thanks to my beloved girl-friend and soul-mate Ngoc-Tram (Noki)
Tran, for her love and for keeping me motivated when | needed it!

Towards an Integrated Approach to Collaborative Web Usage

Towards an Integrated Approach to Collaborative Web Usage

Brief Contents

1 Introduction

2 Relevant Concepts

3 Possible System Architectures

4 Features for a Prototype

5 Experiment and User Survey

6 Discussion

Appendix A: System Implementation Documentation
Appendix B: Full Feature-Matrix

Appendix C: Experiment and User Survey Raw Materials
Appendix D: Simple Report Format (SRF)

Appendix E: Indices

Appendix F: References

Towards an Integrated Approach to Collaborative Web Usage

10

Towards an Integrated Approach to Collaborative Web Usage

Contents

1 Introduction
1.1 Terminology

1.2 Existing Approaches: Web Analysis and Browsing Helper
Systems
1.2.1 Analysis of Browsing Behavior
1.2.2 Web Usage Mining
1.2.3 Recommender Systems
1.2.4 Hyperlink and Content Analysis
1.2.5 Revisitation and Annotation Tools
1.2.6 Collaborative Web Usage
2 Relevant Concepts
2.1 Collaboration
2.2 Communities
2.3 Web Navigation
2.3.1 Documents
2.3.2 Following Links
2.3.3 Session History
2.3.4 Bookmarks
2.4 Communication
2.5 Categorization
2.6 Privacy and Security Issues
3 Possible System Architectures
3.1 Options from a Server Centric Perspective
3.1.1 Web Server: The Source of Content
3.1.2 Proxy: Some Intermediary
3.1.3 Client: Peer-to-Peer
3.1.4 Independent Server
3.2 Options from a Client Centric Perspective
3.2.1 Custom Browser Implementation
3.2.2 Plugin for Existing Browser
3.2.3 Parasite to an Existing Browser

3.3 Selected Architecture: Meta-Browser as Web Application with

Independent Server
4 Features for a Prototype
4.1 Communities
4.2 Session History
4.3 Bookmarks
4.4 Communication
4.5 Statistical Information
4.6 Feature-Matrix
5 Experiment and User Survey
5.1 Testbed
5.2 Experiment
5.3 User Survey
6 Discussion

11

Towards an Integrated Approach to Collaborative Web Usage

12

Towards an Integrated Approach to Collaborative Web Usage

Appendix A: System Implementation Documentation
Appendix A.1: The User's Perspective
Appendix A.2: Technologies Used for Implementing the System

Appendix A.3: User Interface of the System
Appendix A.3.1: Model
Appendix A.3.2: View
Appendix A.3.3: Controller

Appendix A.4: Retrieving and Processing Web Pages
Appendix B: Full Feature-Matrix
Appendix C: Experiment and User Survey Raw Materials
Appendix C.1: Experiment Raw Data
Appendix C.2: Questionnaire used for the User Survey
Appendix C.3: Results of the Survey
Appendix D: Simple Report Format (SRF)
Appendix E: Indices
Appendix E.1: Terms
Appendix E.2: Acronyms and Abbreviations
Appendix E.3: Tables
Appendix E.4: Figures
Appendix F: References

13

Towards an Integrated Approach to Collaborative Web Usage

14

Towards an Integrated Approach to Collaborative Web Usage 15

1 Introduction

The World Wide Web is a rich and complex space for retrieving all kinds of information
in academic and commercial contexts. Many people are already collaborating in the
effort to use this medium efficiently, but doing so without dedicated technical support.
Instead, people are sending URI[Uniform Resource Locator]s pointing to documents
they find interesting via eMail, with annotations that are lost when the eMail is deleted.
Bookmark collections are manually converted to Web pages and uploaded to the Web -
but peers must still be informed about the location of such pages and maintaining
them is cumbersome. Some Web pages offer guestbooks, that are then used by an
emerging community of people interested in the contents of such pages - but they all
have different user interfaces.

The present diploma thesis is an attempt to develop an integrated approach to
collaborative Web usage - supporting these forms of collaboration with a software
system that integrates features existing distributed among various applications into a
consistent concept.

To this end, first, a terminology is laid out, defining the terms relevant to the subject
matter. Then, a variety of existing approaches in various disciplines is surveyed and
their relevance disussed. These two sections have been included from previous work
([Wagner2002]) with minor stylistic improvements. They provide the fundament for
the following chapters.

In the first chapter, the concepts relevant to an integrated approach to collaborative
Web usage are introduced: collaboration, communities, Web navigation,
communication, categorization and privacy and security issues. Privacy and security
issues is a somewhat modified version of a similar chapter in [Wagner2002] and
included here for completeness. In the following chapter, the first step towards an
implementation of these concepts is taken with the discussion of various options for an
architecture for such a system.

With the selected architecture, a set of features is possible, and many of these features
have been chosen to be implemented in a prototype, called teamXweb. These features
are discussed and the feature set is compared to existing Web browsers. The prototype
has been implemented with the given architecture and the discussed features. While in
[Wagner2002], the features were still of a theoretical nature, a similar text has been
used for the present work - but describing an actual system, which is illustrated by
screenshots and a more detailed description.

The prototype is then used for conducting an experiment, which is desribed in the
following chapter. Finally, the whole work, including the results of the experiment are
discussed and an outlook for the future is given.

Towards an Integrated Approach to Collaborative Web Usage 16

1.1 Terminology

An effort to clarify the terminology for the broad area of the World-Wide Web has been
summarized in [W3CWCA]. The following terms defined there may be relevant to the
present work:

e resource [http://www.w3.0rg/1999/05/WCA-terms/#Resource]

e link [http://www.w3.0rg/1999/05/WCA-terms/#Link]

e anchor [http://www.w3.0rg/1999/05/WCA-terms/#Anchor]

e client [http://www.w3.0rg/1999/05/WCA-terms/#Client]

e server [http://www.w3.0rg/1999/05/WCA-terms/#Server]

e proxy [http://www.w3.0rg/1999/05/WCA-terms/#Proxy]

e user [http://www.w3.0rg/1999/05/WCA-terms/#User]

e publisher [http://www.w3.0rg/1999/05/WCA-terms/#Publisher]

e Web core [http://www.w3.0rg/1999/05/WCA-terms/#Core]

e Web resource [http://www.w3.0rg/1999/05/WCA-terms/#Resource2]
e Web client [http://www.w3.0rg/1999/05/WCA-terms/#Client1]

e user session [http://www.w3.0rg/1999/05/WCA-terms/#User1]

e episode [http://www.w3.0rg/1999/05/WCA-terms/#Episode]

e server session [http://www.w3.0rg/1999/05/WCA-terms/#Serverl]

e cookie [http://www.w3.0rg/1999/05/WCA-terms/# Cookie]

e Web page [http://www.w3.0rg/1999/05/WCA-terms/#page]

e page view [http://www.w3.0rg/1999/05/WCA-terms/#Page]

e host page [http://www.w3.0rg/1999/05/WCA-terms/#Home]

e Web site [http://www.w3.0rg/1999/05/WCA-terms/#site]

e independent Web page [http://www.w3.0rg/1999/05/WCA-terms/#Independen]
e Web site publisher [http://www.w3.0rg/1999/05/WCA-terms/#sitel]
e subsite [http://www.w3.0rg/1999/05/WCA-terms/#Subsite]

e Web collection [http://www.w3.0rg/1999/05/WCA-terms/#Collection]

In the present work, a Web user community is defined as a group of Web users that
either have "something" in common or explicitely are members of a particular group. A
more in-depth discussion of this term is subject of chapter 2.2. Note that in the related
work introduced in chapter 1.2.4, a Web Community is defined as a set of related Web
pages and has no direct relation to the users who view those pages. In the present
work, the term Web content community is used for the latter type of Web communities
to draw a clear line between the social user communities and the more technical view
on communities resulting from considering Web pages.

Navigation behavior is how particular users or a group of users navigate through the
Web. Navigation behavior is an artefact of individuals’ or communities’ Web usage over
time. Two studies that try to analyze individual user’s navigation behavior are
introduced in chapter 1.2.1. Navigation behavior is discussed more in detail in chapter
2.3. A basic concept of navigation behavior can also be found in chapter 4.2, where the
terms navigation events and browsing state are defined.

[Kleinberg99] defines Web graph as the directed graph consisting of Web pages
(nodes) and links between them (directed edges). The Web graph can also be seen as
some sort of space populated by users, which may be a useful metaphor to support
collaborative browsing.

The traversal of this graph performed by users is generally called browsing. In the
present work, while users are browsing the Web, they leave behind individual trails
that can be accumulated "globally" or for a specific group of users to (community)

Towards an Integrated Approach to Collaborative Web Usage 17

paths. Note that individual trails and (community) paths can be represented as
subgraphs of the Web graph, but other representations (e.g.[exempli gratia],
sequences) are also possible.

[Cheung] defines a Web tool as a software tool that helps users to retrieve, locate and
manage Web documents. They classify Web Tools into five levels:

Level 0 Web tool |A software system that “retrieves documents for a user under straight
orders.” (/Cheung]): the user must give the document's URI to the
browser so that it can retrieve the document. It's not perfectly clear from
the source, whether or not following links is a level 0 Web tool capability -
but that is assumed for the present context. The common term for /level 0
Web tools is Web browser. Note however, that most currently available
Web browsers extend the behavior where the user has to instruct the tool
where and how to find the documents at least by history and bookmark
mechanisms.

Level 1 Web tool |These tools provide “a user-initiated searching facility for finding relevant
Web pages” (/Cheung]). The most common example are Internet search
engines. Current Web browsers often integrate search engines into their
interface.

Level 2 Web tool |Software systems that “maintain user profiles and have an active
component for notifying users whenever new relevant information is
found” (/Cheung]) belong into this class of Web tools. The user profiles in
this class of Web tools are usually static: the user enters his interests and
the system looks for information matching those interests.

Level 3 Web tool |A more dynamic and deductive approach qualifies a level 3 Web tool. While
for a level 2 Web tool the user needs to be aware of his interests and must
be capable of expressing them to the tool, /level 3 Web tools attempt to
infer the user profile by analyzing the user's behavior. This becomes
particularly important as humans are not used to, and usually not capable
of formalizing their browsing behavior or information needs because this is
not needed in most every day situations (/Chalmers98]). An overview of
some of the systems and their theoretical backgrounds is given in chapter
1.2.3.

Level 4 Web tool |A level 4 Web tool should have “the capability of learning the behavior of
both information users and information sources” (/Cheung]). Designing
the architecture for such a tool is the objective of [Cheung].

Table 1.1: Classification of Web Tools after [Cheung]

The objective of the present work is laying out the foundation for a collaborative Web
tool, which is at least a level 3 Web tool that additionally supports the collaboration
between its users. Note that most of the examples given in chapter 1.2.3 are in some
ways collaborative as they use matching of different user’'s profiles for their
recommendations. The distinction between such recommender systems and
collaborative Web tools is that the former use collaboration implicitely without
necessarily letting the user even notice it. The latter, however, should provide means
for users with similar interests to explicitely collaborate. For example, by sharing the
information they find on a particular search task or making annotations to a particular
document available to others.

In the features of the prototype discussed in chapter 4, the attempt to infer the user’s
profile is not made - instead the system only tracks the user behavior and he must
explicitely mark his interests by bookmarking pages. While the concepts are quite

Towards an Integrated Approach to Collaborative Web Usage 18

interesting to discuss, the actual implementation is beyond the scope of the present
work. However, a design goal of the prototype is easy extensibility with features like
this and subsequent work may integrate the implementation of /level 3 Web tool
features.

[Twidale] introduces a few interesting terms concerning (collaborative) browsing
behavior:

Tactics for searching information include consulting, which is described as asking a
colleague for help but may also be used when strangers are asked for assistance. This
has the advantage that the references are already filtered according to the taste of the
consulted person. To bibble, is to use other searchers results, for example, published in
the form of a bibliography for one’s own search. However,

“The results of most searches are not published as bibliographies but are
private, local and temporary and consequently, from the perpective of
future users, the information is lost. This means that the great majority of
searches that are conducted fail to bibble properly; they fail to take
advantage of previous results because there is no mechanism to support the
sharing of this information.” (/Twidale])

In an informal study conducted at the Lancaster University Library (referred to by
[Twidale]) the following collaborative interactions have been observed (which are
considered relevant to Web searching): Joint search: small (2-4) groups of students
working on a single terminal, involving frequent pointing at the terminal screen.
Coordinated search: a group where each participant works on his own terminal,
sometimes competing to find the information and sometimes clustering around
terminals like in joint searches. Chance contact occurs when people happen to use the
same resource and thus get in contact.

“Group searching takes place when two or more people share a common
aim, and choose to coordinate their searching efforts.” (/Twidale])

Differentiated group searching expresses that the group members work in the same
area, but their specific searching aims are different.

Serendipitous altruism is used to describe the fact that

“colleagues in a community may be willing to help each other's information
searching even if they are not directly involved in the project.” ([Twidale])

“If your colleagues know what you are working on and happen by accident,
in the process of undertaking their own searches, to come across something
that may be of interest, they may altruistically pass the information to
you.” ([Twidale])

As the cost for such help must be minimal for the help to be given, a tool for
collaborative searching should support serendipitous altruism sufficiently.

In [Twidale], a distinction is made between product-related and progress-related
information exchange between people. In product-related information exchange, the
search results are discussed, while progress-related information exchange deals with
the process of searching (e.g., how to find certain types of information).

Towards an Integrated Approach to Collaborative Web Usage 19

1.2 Existing Approaches: Web Analysis and Browsing
Helper Systems

There is a large body of literature that deals with different aspects of the Web which
are relevant to the present work. The following sections are an attempt to classify that
literature and provide the background to this project.

1.2.1 Analysis of Browsing Behavior

In this section, some approaches of tracking and analyzing the navigation behavior of
Web users are introduced and their results outlined. While chapter 1.2.2 presents
approaches that analyze server logfiles, this section is dedicated to client-side tracking
of Web usage and the analysis of the collected data. The title Analysis of Browsing
Behavior may seem applicable to both client- and server-side based approaches.
However, server-side based approaches have several limitations so that the general
term browsing behavior is reserved for client-side tracking in the present work, while
Web usage mining as a more special term is used for server-side tracking. The body of
existing work introduced in this section is very small compared to the large field of
Web usage mining - in fact, only two studies have been found that analyze and
elaborate upon the data collected on the navigation behavior by tracking users at the
clients.

However, there has been research on user strategies and usability of closed
hypermedia systems preceding the WWW/[World Wide Web], which is beyond the scope
of the current work, but provided a basis for [Catledge]. In their work, a modified
version of NCSA[National Center for Supercomputing Applications]'s XMosaic Web
browser is used to capture all user interface level events of 107 users in an experiment
lasting three weeks. While there are many other types of user events also included in
the study (some specific to XMosaic, e.g., Reload Configuration Files, or Delay Image
Loading On/Off), the most important navigation-related user events are following a
hyperlink (52%) and the back command (41%). Much less often used are opening a
manually entered URI, using the hotlist (hotlist is XMosaic’s name for bookmarks) and
the forward command (2% each). Opening local files (0.7%), going to the home
document (0.5%) and using the history list (0.1%) are found to be the least used
features. One possible explanation given for the minimal usage of history and
bookmarks is the design of the interfaces to these functions.

While XMosaic does provide a bookmark feature in its interface, many users tended to
also use “home pages as indexes to interesting places” ([Catledge]), which provide a
similar functionality as bookmarks but better layout control and customization.

A finding on a more abstract level is that users tend to navigate within a small area of
particular sites, the individual trails resembling a spoke and hub structure (when using
a graph structure where using the back command results in going back to the previous
node instead of moving to a new node within a sequence).

Directions for the design of Web sites concluded from the results are that the most
important information must be accessible within two to three hyperlinks of the initial
home page. Different types of users are identified ("Serendipitous Browser", "General
Purpose Browser" and "Searcher", taken from [Cove]) and offering different views of
the pages for these different types of users is suggested.

An approach more focussed on users' revisitation patterns and their implications on the

Towards an Integrated Approach to Collaborative Web Usage 20

design of revisitation tools in browsers has been taken by [Tauscher]. The design of
current browsers’ history mechanisms is explicitely criticized and an objective of the
work is to motivate improved interface designs revisitation tools (within browsers or
external, see chapter 1.2.5 for examples).

As in [Catledge], a modified version of XMosaic is used to track the usage data. In fact,
the modifications of the earlier study are used as a basis for the latter one, but a
smaller set of actions are captured. A distinction is made between navigation and non-
navigation actions, where hotlist management (add/delete/edit hotlist entry) belongs
to the latter category. There is only one action open URI (making up 50% of the
actions executed in the experiments) for the following methods of opening a new page:

Anchor: using a hyperlink (82,7% of open URI)

Keyboard: typing a URI into the URI field (6,8% of open URI)

Hotlist: selecting a page from the hotlist (5,0% of open URI)

Dialog: using the Open URI dialog (2,0% of open URI)

History: selecting a page from the window history dialog (1,3% of open URI)
Other: less frequent methods such as causing a page to display with an external
application (2,2% of open URI)

Just as in the previous study, the back command is used frequently (30%), and other
actions are used seldom (e.g., home (5%), forward (0.8%), new window (0.8%) and
open local (0.2%)). 1t is not clear, why home, back and forward are not included in
open URI, as they all result in displaying a new URI. Possibly, this is done because the
URI is not selected but taken from stored data the user can not directly access, as in
the other actions subsumed under open URI.

A very interesting finding of [Tauscher] is that the same pages are revisited very often,
with a recurrence rate of 58%. The recurrence rate is defined as “the probability that
any URI visited is a repeat of a previous visit” (/Tauscher]). With the data of
[Catledge] that has been reanalyzed in the study of [Tauscher], the rate was even
higher at 61%. The conclusion from that fact is that browser interfaces should help
users revisiting pages - a few approaches are introduced in chapter 1.2.5.

Even though the recurrence rate is very high, many pages are visited only once (60%)
or twice (19%), and many of the visited pages are entirely new (40%). Furthermore,
while the major contribution to the high recurrence rate are the last few pages visited
(by using the back command), 15% of recurrences are not within a list of the last 10
URIs visited.

Finally, the little acceptance of current history facilities is explained with limitations of
the interfaces. In particular, the effort for managing hotlists is considered a problem.
Furthermore, histories are usually not easy enough to access and should be integrated
better into the browser's user interface.

While studies analyzing browsing behavior as and end in itself are rare, the browsing
behavior of users is used for example in recommender systems as introduced in
chapter 1.2.3. As an example, [Goecks] has been chosen. The basic idea is that a
user's interests may be deduced from certain aspects of his browsing behavior, which
allows agents giving the user recommendations of potentially interesting pages based
on his usage profile (see chapter 1.2.3 for further information on recommender
systems). An innovation of [Goecks] is that mouse and scrolling activity are added as
parameters of the user's navigation behavior.

Towards an Integrated Approach to Collaborative Web Usage 21

To obtain this information, an agent using Microsoft Internet Explorer 4.0 has been
implemented. The agent captures information like the number of hyperlinks clicked on
a page, the amount of scrolling the user performed, and whether the user bookmarked
the page. No results comparable to those in the previously reviewed studies are
available, as the objective of the work was not finding out about the navigation
behavior, but using the navigation behavior as input for algorithms analyzing the user’s
interests.

For the current project, the architectures used for collecting information on users’
navigation behavior are quite interesting. Furthermore, the results of the studies
concerning the usage of single-user browsers indicate which functions may be
necessary for systems supporting collaborative Web usage. While improvements for
existing revisitation functions are suggested here, examples are subject of chapter
1.2.5.

1.2.2 Web Usage Mining

The term Web usage mining has been suggested by [Cooley97], as opposed to Web
content mining, as a specific variation of Web mining. There, it is defined as “the
automatic discovery of user access patterns from Web servers” ([CooleyS7]), and in
fact all of the work in this category deals with data from Web server logfiles -
alternative architectures for capturing the usage data are only theoretically discussed
in the survey of [Srivastava], but according to the author's knowledge not used in
practice in this field.

The major objective of the work introduced in this section is to provide data for content
providers so that they better understand their customer's use of their content. In that,
the restriction to server logfiles - which prohibits logging the complete path of a user
over multiple websites or gathering specific information about the navigation behavior
(see chapter 1.2.1) - does not play a major role.

However, [Srivastava], a recent survey of the existing work in that area, broadens the
definition of Web usage mining to include any Web data, allowing proxy and client level
data collection as well. This makes sense as many of the techniques proposed in the
given papers could easily be applied to client level logfiles even if that application may
not have been considered by the authors. On the other hand, a large part of the
complexity of Web usage mining is based on the challenge of extracting individual
user's trails from logfiles of servers of the stateless HTTP[HyperText Transfer Protocol],
a problem that does not arise when the data is captured at the client.

In [Pitkow], some of the problems with server-side tracking are discussed and a
terminology is suggested: An unidentified user is defined as a user about whom no
information is available. This can be the case when Web proxies operate between
server and client. The default type of visitor on the World Wide Web is called session
visitor: an identifier can be inferred using heuristics based on the information available
in server-logfiles, the Web site topology etc.[et cetera (and other things / and so
forth)], or an identifier is explicitely created using cookies. To a certain extend, the
former techniques can be used to even identify users behind firewalls, as it was done in
[Pirolli]. A tracked visitor is defined as “a visitor who is uniquely and reliably
identifiable across multiple visits to a site.” (/Pitkow]) This seemingly can be achieved
with long-term cookies. However, it should be added that this does not work when
visitors use different browsers on the same machine / user account or different
machines / user accounts. Finally, an identified visitor extends the tracked visitor with
additional information. To a certain extend, such information can be automatically

Towards an Integrated Approach to Collaborative Web Usage 22

gathered from other sources - however, the common way is asking the users for that
information. Either way the reliability of such information is very questionable unless
the user profits of giving valid information.

A major problem with server-side logfiles are the various levels of caching because it
distorts the data significantly. If proxies and browsers cooperate, this can be
circumvented by a method called cache-busting - this is tried by using HTTP headers
indicating that the page should not be cached. If browsers or proxies ignore the
relevant headers, cache-busting via HTTP headers fails. A more brutal approach that
always works is adding a random dummy parameter to the URI, which causes the
browser’s or proxy’s URI matching to fail and thus inhibits caching. Such techniques
are questionable, however, as they interfere significantly with how the Web is
supposed to work! After all, there are good reasons for caching and inhibiting this just
to get better usage data (which raises privacy concerns in itself) calls for criticism.

For the present work, Web usage mining is interesting because it provides some
discussion and formal models for the individual trails users leave behind while browsing
the Web as well as some discussion on how usage data can be gathered. Even though
most papers of that field deal explicitely with server logfiles, many of the techniques
could be adapted to client-side logging, usually in a simplified manner as some of the
issues complicating the extraction of valid usage data from server-side logfiles
inherently do not exist when using client-side logging.

1.2.3 Recommender Systems

Recommender systems are tools that recommend Web pages to a user that shall be
interesting to that user. While [Terveen] includes recommendation support systems in
their broad survey, where the recommendation process is not automated but instead
users who want to share recommendations are supported, this section only includes
systems that automatically compute the recommendations. Recommendation support
systems are instead subject of chapter 1.2.6. The data used to compute
recommendations can either be of a single user only, or of a community of users. While
the latter implies some sort of collaboration, the focus is on the recommendations, and
how those recommendations are computed is usually not visible to the user of the
system - this draws another line between recommender systems and collaborative Web
usage as described in chapter 1.2.6.

[Terveen] presents a general framework for understanding recommender systems,
including what is termed collaborative Web usage in this section. They define content-
based systems as using only the preferences of the seeker and attempting to give
recommendations based on similarity to items previously liked by that seeker. Content-
based systems focus on learning the user’s preferences and filtering new items
according to those preferences. Examples of content-based systems are
[Armstrong1997], [Cheung], [Goecks].

Systems that apply collaborative filtering on the other hand, employ the ratings of
other users and try to match those new items that other users with similar preferences
have liked. Thus, the recommendation process is completely content-independent.
Such systems focus on algorithms that discover similarities between user preferences
to match people for gathering the recommendations. Examples of systems using
collaborative filtering include [Pazzani], [Rafter], [Resnick1994], and [Wasfi].

Collaborative filtering has been extended significantly by [Chalmers98], by introducing
the path model. To capture the context in which a particular information item is used,

Towards an Integrated Approach to Collaborative Web Usage 23

instead of using only single items, the paths of users (e.qg., trails of users on the World
Wide Web) are used to build both user profiles and recommendations based on these
profiles.

[Claypool] introduces a few problems with pure collaborative filtering: The early rater
problem occurs with new items, that haven’t been rated by any users. The same
applies to new users, that have no profile which can be matched. The worst case of the
early rater problem are new systems, where neither users, nor items have any ratings
to compute recommendations from.

The sparsity problem plays a role in information domains where the number of items
exceeds what individuals can absorb and rate. As this results in sparse matrices
containing the ratings of all items for all users, recommendations are hard to compute
from these sparse matrices.

Finally, gray sheep are people who do not consistently agree or disagree with any
group of people. Gray sheep do not benefit from pure collaborative filtering systems as
the system cannot judge their interests appropriately.

Pure content-based systems are criticized as having “difficulty in distinguishing
between high-quality and low-quality information that is on the same
topic.” (/Claypool]) With an increased number of items in general and for specific
topics, this problem gets even worse and the quality of content-based
recommendations is reduced.

To solve these problems of pure collaborative and content-based filtering systems, a
combination of both is suggested and an extensible architecture introduced.
[Pazzani99] further extends this idea by including demographic information into the
filtering process, and shows that the quality of recommendations is actually improved
by using the combination.

Other work on recommender systems includes [Liebermann] and [Maglio1997]. Both
try to obtain a model of how the user searches the Web and give suggestions based on
this model.

For the ongoing project, an integration of automatic recommender system technology
is a promising idea. While the main objective is helping people collaborate explicitely
and provide an increased awareness of other people, the collected data can be used as
input for any combination of the introduced techniques of automatically recommending
interesting pages. ldeally, the recommendations are explained to the user, as
suggested in [Herlocker]. This can further enhance the awareness of the community
one browses the Web with.

Another very interesting aspect of recommender systems in respect to the current
work is that they usually recognize communities based on the various types of user
profiles. While the pure recommender systems need those communities to base their
recommendations upon, the communities can also be used to make people with similar
interests meet each other. This idea is discussed by [Terveen], including some of the
privacy issues involved therein. Furthmore, such explicit communities based on user
profiles may even be used to evaluate the quality of the community by asking its
members whether they feel the community shares their interests or not. The privacy
issues of such a system must be carefully weighted against the potential benefit for the
users, ideally in a way that puts the freedom of choice to the user himself.

Towards an Integrated Approach to Collaborative Web Usage 24

1.2.4 Hyperlink and Content Analysis

The body of work introduced in this section deals with analyzing the static structure of
the Web defined by hyperlinks and/or content to find out relationships between pages
and group pages into clusters, called Web (content) communities. Notice that content
analysis is only introduced in connection with hyperlink analysis here. While content
analysis surely is a very large field as well, it has been left out for the sake of brevity
and may be included in subsequent work. Hyperlink analysis is usually a static
approach that does not take into account user behavior. A recent survey of the work in
this field and some terminology is given by [Efe]. The simplest and most obvious form
of page A implicitely endorsing page B is a direct link from A to B. When a page A links
to two other pages B and C that is called co-citation and it is assumed that B and C
have some relevance to each other as well as to A (/Efe]). Another measure, also
taken from bibliometrics (see below), is bibliographic coupling: the more links two
pages A and B have in common, the higher their bibliographic coupling and thus, a
higher similarity or relevance to each other is assumed (/Kleinberg]).

One finding of hyperlink analysis is that Web pages can be categorized into authorities
and hubs: authorities are considered the best sources of information on a particular
topic and hubs are collections of links to those locations (e.g., [Chakrabarti],
[Kleinberg], [Gibson1998b]). Discovering these pages is not a trivial task, and much of
the work tries to find algorithms that efficiently handle this task. For examples, see
[Dean], [Flake], [Gibson], [Kleinberg].

Another interesting link topology is that of a web ring: a set of related pages that link
to each other one after the other. Each page n links to a previous page n-1 which in
turn links to n, and a subsequent page n+1 which links back to n. Web rings are
discovered for instance by the method of [Flake].

According to [Gibson], "link structures have been studied in hypertext research that
predates the www", for example in [Botafogo]. A related field are bibliometrics, in
which the patterns of citation among scientific papers is studied. A review can be found
in [White]. Some of the connections between bibliometrics and hyperlink analysis are
studied in [Larson]. A few important differences between scientific citations and Web
links are (/Efe]):

e In scientific citations relevance, objectivity and information quality can be
expected. Web links are usually more subjective and noisy.

e Web links also serve navigational purposes, while scientific citations always have
(at least some) relevance to the content.

o Web links are dynamic, scientific citations are static. In particular, Web pages
often mutually link each other - a phenomenon very rare to scientific work.

For an example where content and hyperlink analysis is combined, see [Davison2000].
While other approaches only include the topology of the links, here the text in, and
around the links is used - assuming that it somehow describes the pages linked to. In
the experiment it is shown that the text within the anchors often represents at least a
part of the target page.

[Pirolli] attempts to improve Web navigation and assimilation by integrating hyperlink
topology, page meta-information (like file size and URI), usage frequency and usage
paths as well as text similarity between the pages. They have also defined a set of
types of Web pages according to their roles:

Towards an Integrated Approach to Collaborative Web Usage 25

e head page: best starting point for a set of pages. There are two subclasses of
head page: personal home pages and organizational home pages.

e jndex page: basically the same as hubs, can often be identified by words like
"index", "table of contents" or "toc" as part of their URI or title.

e source index page: entry points and indices into a related information space.
Quite similar to index page, but these are also head pages.

e reference pages: pages that are used repeatedly to explain a concept or contains
actual references. The subclass destination page is used for pages that do not
point anywhere else (e.g., expanded acronyms, copyright notices, and
bibliographic references).

e content pages serve no navigational purposes but only deliver information.

While previous work concentrated mostly on the communities in themselves, [Toyoda]
is also concerned with the relationships between those communities and a way of
navigating between related communities. To that end, they have developed a
techniqgue for creating a community chart, which is a graph of which the nodes are
communities and the the edges relationships between those communities. The edges
are weighted, the weight representing the strength of the relationship.

The major objective of this approach is improving the way the Web can be searched,
organized and visualized. Another application of the results of such work is more
specific targeting of advertisements. If the communities of which the visitors may be
interested in certain products are known, the most authoritative pages can be used for
effective advertising (/Efe]). Last but not least, finding out about the social and/or
intellectual structure of the Web is an end in itself.

In the context of the present work, the results of research dealing with hyperlink
and/or content analysis may be valuable to define groups of documents that people
look for information at. A user may then communicate with users currently visiting
pages from the same group (a Web user community based on a Web content
community) which may make it much easier to find the most interesting information by
simply asking others. Hyperlink analysis may be extended by using the links actually
followed by users instead of all links, and possibly even using navigation behavior
information like how much time is spent with a page to improve the quality and
relevance of the clusters. Intuitively, a page that a user returns to many times and
from which he then visits other pages may be a good hub for the topic the user is
currently interested in (see chapter 1.2.1). A page visited from such a hub that the
user spends a lot of time with, possibly bookmarks it or saves it locally is probably a
good authority.

1.2.5 Revisitation and Annotation Tools

Work dealing with the creation and integration of user interfaces for revisitation and
annotations tools includes [Barret], [Cockburn99a], [Cockburn99b], [Hascoet1999],
[Hascoet], [Kaasten], [Koch], [Laurent], [Li], and [Tauscher]. In [Hascoet1999], an
attempt is made to integrate a short term history, a personal best of list, a list of
unclassified documents to be read later, and an overview of an organized collection of
bookmarks into a unified user interface. The model used for this integration, termed
"document as user interface" by the authors, can also be used for navigation. While
most browsers show bookmarks in a simple tree, BookMap uses a fisheye view that
allows zooming in to and out of areas of interest, trading details for context. Another
improvement to the handling of bookmarks is filtering - a technique also used by
[Kaasten] and [Li]. While the keyword filter is quite simple, a special approach has
been developed for filtering by date: instead of entering the dates manually, a slider is

Towards an Integrated Approach to Collaborative Web Usage 26

used that consumes minimal screen estate (see below). The length of the cursor
represents the length of the period, and the position of the cursor represents the
period itself.

[Kaasten] deals with an integrated model for "back", history and bookmarks, based on
a recency-ordered history list, in order to improve the usability. The "back-button" in
current Web browsers is usually implemented as a stack, leading to problems as going
back and then branching to another page destroys the old branch. A recency-based
history, on the other hand, simply records the pages visited in the time-based
sequence they are visited. A recency-based list not only avoids this problem but is also
considered more intuitive to the users. While conventional bookmarks provide useful
means of structuring the collection, this is considered "heavyweight" by [Kaasten] and
a solution where bookmarks are replaced with "dogears" on the list of visited pages is
proposed. Like in [Hascoet], pages are represented via thumbnails, as this has been
proven to be more effective than Web page titles or the URIs of the pages
([Cockburn99a], [Cockburn99b]). Implicit bookmarks are somewhat similar to the best
of list in the above work: by visualizing the page visit frequency a user can easily
distinguish between pages that have been visited more or less often. By filtering, best
of and bookmarks only lists can easily be created, as well as a simple form of content-
based filtering, using the page’s title or showing only pages from particular domains.

PowerBookmarks introduced by /[L/] is an information organization, sharing, and
management tool. |t supports advanced query, classification, and navigation
functionalities on bookmark collections and also uses users’ access patterns for
features like automated bookmarking, document refreshing, and bookmark expiration.
For example, when a user visits a Web page frequently, it can automatically be
bookmarked.

A major problem with revisitation tools is the "screen real estate" ([Cockburn99b]): as
the Web pages the user actually wants to see usually require a lot of space on screen,
revisitation tools compete with that space. Thus, the more space the tool requires, the
more useful it must be for the user so that he does not hide it somewhere and thus
stops using it. Therefore, “[r]evisitation tools must [...] maximise the value of the
information they present, and do o) using minimal screen real
estate.” ([Cockburn99a])

[Cockburn99a] also discusses various approaches to the structural organization of page
display:

e Hub-and-spoke dynamic trees capture the user's navigation behavior well, by
adding new pages, with edges to the pages they are linked from.

e With Spatial Layouts the user can arrange the pages according to his taste,
making it easier to remember a page's content by where it has been placed. This
approach has a major disadvantage, namely that placing the pages is a heavy
burden to the user.

e Sjte maps contain the complete contents of a particular site. These can be
statically arranged which may make navigation easier - however, many included
pages have usually not been visited before. Thus, instead of using this for
revisitation it is probably more useful for finding new pages...

e Temporal organisation is another example of a natural way of representation and
facilitates finding previously visited pages by exploiting the user's memory of
when he visited a certain page.

There have been various approaches to annotating the WWW, some of which shall be

Towards an Integrated Approach to Collaborative Web Usage 27

introduced here. One major design issue with annotation systems is how the
annotations are gathered, stored and presented. There are generally two classes of
systems: systems that require software installation or configuration changes on the
client-side (e.qg., [Kahan], [Laurent], [Marais]), and systems that use standard internet
technology like JavaScript to embed the functionality in standard Web browsers (e.g.,
[Koch]). The latter, however, usually requires changes on the Web server or the
documents it provides, restricting annotations to pages that are prepared for taking
annotations. An alternative is installing and using a proxy-server or similar
architecture, where the original pages are rewritten to include the annotations. This
approach has been used, but this is not covered here, see [Laurent] instead.

[Koch] discusses the use of an annotation tool in academic courses. In such an
environment, the need of enhancing the documents is not a problem as most relevant
documents are usually accessible and can be easily changed.

Yawas, the prototype introduced in [Laurent] is a Java and JavaScript based annotation
tool that is implemented as a client-side proxy. It works with any Web browser due to
its architecture and allows annotating both remote and local documents. Specific texts
within Web pages can be highlighted and annotated and those annotations are stored
locally, which circumvents privacy concerns. Sharing annotations is possible via import
and export functions.

A very promising project is Annotea (/Kahan]), a W3C[World Wide Web Consortium]
LEAD[Live Early Adoption and Demonstration] project for enhancing the W3C
collaboration environment with annotations. For editing and viewing the annotations,
which are stored on special purpose servers, an own Web client is available (Amaya).
However, there are also add-ons for existing browsers including Internet Explorer and
Mozilla.

A major goal of Annotea is to re-use as much existing W3C technology as possible -
consequently, open standards like RDF, XPointer, XLink and HTTP are used extensively.
This simplifies extending Annotea and interoperating with other annotation systems.
Another interesting aspect of Annotea is that annotations are typed with types defined
by the users, allowing classification of annotations into classes like comment, erratum
etc.

While other approaches have a particular user interface included, Annotea is user
interface independent. Clients can be implemented based on the standard protocols
defined by the Annotea project.

Finally, privacy and scalability concerns are circumvented by using multiple decentral
annotation servers instead of a single server. This both allows collaboration among
multiple users or even user groups (unlike client-side storage) and at the same time
assures that the groups using a server can keep their information private.

While annotation tools often are targetted at collaborative work, revisitation tools are
usually single-user oriented. Privacy issues pose a major challenge when such
information is used for collaboration, but especially small, limited groups where all
participants know each other profit heavily from an integrative and collaborative
approach to revisitation and annotation in the Web context. While challenging, finding
a well-integrated solution for providing such services to a community may significantly
change the way the Web is used. Obviously, such an approach should be based on and
extend the models used for single-user revisitation and annotation tools.

Towards an Integrated Approach to Collaborative Web Usage 28

1.2.6 Collaborative Web Usage

A good starting point to find out why a tool for collaborative Web usage is needed is
[Twidale]. It draws from some findings on how conventional libraries are used by
students - namely, often in a collaborative manner - and these findings can be
transferred to World-Wide Web usage. One interesting idea in this work is that not only
information, but also people are considered an important thing one can search for:

“We believe that browsing for people, their electronic representations or
representations of their activities, is a neglected and important
area.” ([Twidale])

For a digital library that allows collaboration, the authors propose the following
communication aspects:

e direct information exchange between individuals: "do you know?"

e direct information exchange between an individual and a group: "does anyone
know ?"

e Searching for experts: "who might know?". This can be implemented by profile
matching (see the coherence with chapter 1.2.3).

e Coordinated searching, which involves a lot of communication between
participating users during the actual search.

e Making contacts. "For example, if a record is kept of books borrowed, or
electronic documents inspected, then two users with overlapping 'browsing habits'
might be put in contact. Alternatively, if the system maintains 'interest profiles'
for many of its users, these could be grouped together using a clustering
algorithm." (As proposed in chapter 1.2.3.)

e Personal recommendation: In this case, individuals are notified of the search
results. Group recommendation is basically the same except that a whole group is
notified. In similar searches, this activity is done automatically, by discovering
people who may be interested in the information via heuristics like their browsing
behavior and passing the information on to them (see serendipitous altruism...
[#Def_SerendipitousAltruism]).

[Marais] define cooperative surfing as activity of a community of users who
cooperatively and asynchronously build up knowledge structures relevant to their
group. They discuss design options and describe their own approach Vistabar that
supports this activity. The options given include custom browser, browser plug-in,
applet, parasite and proxy. A parasite is defined as “an application that attaches itself
to another executing application and is able to monitor and control it through a
published API[Application Program(ming) Interface].” ([Marais]) These are analyzed
according to the following criteria: control over browser, monitoring, persistent
presence, own UI, UI integration and extensibility. In their discussion, the two most
promising options were proxy and parasite, but as proxies lacked some features they
required (lack of control because of caching, browser display cannot be driven etc.),
the parasite approach was chosen. Their tool, for which they have coined the term
browserware which stands for software components that are both aware of the browser
and the user, supports features like a searchable index on all visited pages (based on
the NI2 library which is also used by AltaVista), finding similar (related) pages,
classifying pages, finding referring pages and associations to real world items via
barcodes.

A feature that may be particularly interesting for determining which sections of a larger
document a user is interested in is also explained: zipping. This is done by determining

Towards an Integrated Approach to Collaborative Web Usage 29

the sections and subsections via their tags (H1, H2, etc.) and then allowing the user to
collapse or expand those sections.

For cooperative surfing in the context of [Marais], bookmarks and annotations are
supported. An interesting feature concerning bookmarks is that it is possible to store
unclassified bookmarks which are automatically classified by the system. Other users
may then change the classification if it doesn’t fit well.

A more recent, proxy-based approach is discussed in [Cabri]. In that work,
synchronous browsing, which includes chat facilities and the like is the main center of
attention. An architecture for a proxy-system that supports synchronous browsing is
explained after a discussion on the different options: server-, client- or proxy-side. In
fact, what is used is a combination of a proxy that also changes the documents it
serves and applets that provide the client-side functionality (these are embedded into
the original pages by the proxy). The features of the implemented system include user-
management, caching pages, modifying pages, informing users which pages other
users have retrieved and changing the colors of links that have been followed or that
returned errors. An additional feature that may be interesting especially in an academic
context is master-siave browsing, which allows one user to have all other users see the
pages he selects. This may be also interesting for teams that want to watch each
other’s sessions simultanuously (of course, it would be a different feature as in this
case, one would talk of joining into a session). Finally, images can be wrapped into
applets so that they become sort of a shared blackboard, where users can point to
areas within the image as well as painting into the image. The performance of the
system is shown to be no hindrance to Web browsing.

A broad overview on collaborative Web usage is also given by [Greenberg]. One very
interesting finding reported therein is that voice communication is very important for
real time collaboration, but has not been implemented by most systems.

[Greenberg] then introduces GroupWeb. GroupWeb is implemented as an own Web
browser, which allows some more features at the expense of forcing users to use
another browser instead of the browser they are used to. In GroupWeb, master-slave
browsing is also supported but here it is even possible to synchronize the scrolling of
the page. Furthermore, telepointers allow participants to point to interesting parts of
the pages currently displayed. Like in other approaches, group annotations are
supported.

In [Dieberger2000], CoWeb, a collaborative Web space is introduced. It allows people
to change the content and create new pages easily. Furthermore, discussions are
supported. An interesting feature is that access history is visualized so that users can
easily find out when other users have been visiting a page. This increases the
community awareness. On the other hand, the architecture - a single Web server -
limits the scope of the system significantly.

As the objective of the present work is building an innovative tool for collaborative Web
usage, the other approaches must be carefully examined and existing ideas must be
integrated with approaches that have not previously been considered for collaborative
Web usage. An important question to ask is "what is missing in those approaches?"
The objective of finding a solution that integrates approaches - generalizing them -
may lead to a system that either cannot be implemented or cannot be used, due to its
complexity. Thus, a way must be found so that the integration simplifies instead of
making things more complicated.

Towards an Integrated Approach to Collaborative Web Usage

30

Towards an Integrated Approach to Collaborative Web Usage 31

2 Relevant Concepts

In this section, various concepts that are relevant to an integrated approach to
collaborative Web usage are introduced.

2.1 Collaboration

Collaboration is the process of multiple people or groups working together with a
common goal. For example, a group of scientists working in the same field and sharing
the results of their individual research do collaborate. While this could also be called
cooperation, the relationship between people involved in collaboration is considered
much closer. In particular, while cooperation may take place between competing
parties, there’s an atmosphere of trust and sharing information in a collaborative
environment, and there is much more of a team spirit (/Maxwell]). Therefore, two
competing companies may cooperate in the specification of a new standard that both
are in need of - but this would not be called collaboration.

This implies an important relationship between the terms that shall be made explicit:
collaboration can be seen as a more specific description of working together than
cooperation. Instances of collaboration are usually instances of cooperation, but
instances of cooperation are usually not instances of collaboration. Therefore, providing
a means for collaboration includes support for cooperation as well.

While the difference between cooperation and collaboration is slight and the terms are
used interchangeable in many contexts, the difference is important for collaborative
Web usage, because the main aspect of working together in this context is sharing
information in a very trustful manner. Thus, the attitude of people (or organizations)
involved should allow sharing that information, and a system supporting collaborative
Web usage may provide less information in an environment where people involved do
not trust each other.

Therefore, the difference between cooperation and collaboration within such a system
may become apparent by the access permissions granted to the cooperating or
collaborating parties. Naturally, cooperating parties would have more restrictive
permissions than collaborating parties.

The present work focusses on collaboration in the process of finding and dealing with
information on the Web, as opposed to the creation of content for the Web. This
collaborative process can be supported with means for efficient communication (see
chapter 2.4), as well as storage and visualization of both the path that lead to useful
information and the information itself (see chapter 2.3). While visualization is only
done in a textual manner in the present work, graphical visualizations of the paths
leading to useful information is quite an interesting field relevant to the present work
that would have been adressed if more time had been available.

2.2 Communities

The groups of people that are involved in such collaboration are termed communities in
this context. Communities can be created by users of the system, by privileged users
(e.g., administrators) or by the system itself (automatically created communities). The
people who belong to a community are called members and their status of belonging to
the group is called membership. While the most obvious way of determining

Towards an Integrated Approach to Collaborative Web Usage 32

membership is by explicitely joining or leaving, communities can also be formed
automatically.

For example, if users have profiles including data about their interests, they can be
matched into communities by matching these profiles. This can help bringing people
with similar interests together. The profiles might also be deduced automatically, for
example, by analyzing the pages that those users have retrieved (as described in
chapter 1.2.3).

Another example are communities of visitors of Web pages. In a way, these
communities exist even when they have no members. A person becomes a member of
the community of current visitors of a Web page when he enters the page, and leaves
the community when he leaves the page. However, he still is a member of the
community of people who have visited that particular page in the past.

This leads to the temporal aspect of membership (duration of membership): in some
communities, people quickly become members and leave after a short period of time,
while with other communities, they remain members permanently once they have
joined. Another temporal dimension is the duration of existence of the community:
some communities may only exist for a short period of time while others last from the
start of the system until the system is shut down permanently. In particular, some
communities will cease to exist when they have no more members while others
remain.

Finally, membership can be open to everybody or restricted. For example, the owner of
a group (or moderator) may have to approve each new member. Another mode of
restricted membership is approval of other members (either all, a certain percentage
or at least one member).

2.3 Web Navigation

This section describes various aspects of navigating the Web.

2.3.1 Documents

When a spatial metaphor is used, documents in the Web are like places that can be
visited. There are a few technical details specific to the current World Wide Web
providing a basis for a conceptual understanding of documents on the Web:
traditionally, a document is a file on the server’s filesystem. This file may consist of
various sections and is stored in a folder. Very often, files stored in the same folder
also have content that is related. Finally, a Web site resides on a specific domain, and
very often, the pages of a domain are also related.

Thus, from a more abstract perspective, the most obvious piece of information is a
document: The document is usually displayed as a continuous piece of information
(e.g., a page in browser, in which the user may scroll), may be stored as a file on a
server or is retrieved from the server through a single request. Within such a
document, there are locations (reached by scrolling, could be selected or highlighted -
or pointed to via the mouse pointer) and particular sections (often having headlines or
names, sometimes accessible through inline links). Documents are related in many
ways to other documents. Such relationships between documents include:

Towards an Integrated Approach to Collaborative Web Usage 33

stored in the same (logical) folder on the server (as defined by its URI)

stored on the same (logical) host (as defined by its URI)

related via a hyperlink (source or target of that link)

related via multiple hyperlinks (for example two documents that are link targets
from the same source, see chapter 1.2.4)

e related by content (similar content, content of page A required to understand
content of page B and the like)

Such relationships play an important role when Web navigation shall be understood
because they allow viewing the data on various levels of abstraction. Sometimes it may
be interesting to know exactly what location of a document most users spent most
time on, while in other situations, the focus may be on how users navigate through
many documents related to one topic to documents related to another topic.

Some of these relationships are technically difficult to analyze. For that reason, an
approach based on technical simplicity (e.g., analyzing the URI string) may be more
appropriate than trying to discover and model more complex and potentially more
interesting relationships. However, human users may often have a good intuition about
relationships that could hardly be discovered automatically. In a collaborative system,
such intuition could be collected and used to enhance the experience for all users.

2.3.2 Following Links

As reported in chapter 1.2.1, the most common navigation action is following a link. In
the common environment (at the time of this writing), where Web content is usually
viewed on desktop computers, a link is followed by pointing to a marked area within
the visual representation of the document, and clicking. The Web browser then usually
replaces the current document with the document the link points to. As mentioned in
the preceding section, this also implies a relationship between the two pages involved.
With the current Web which is based on HTML[HyperText Markup Language] and
therefore the relatively simple hyperlink model of HTML, that is actually all there is to
say about links.

However, another finding presented in chapter 1.2.1 indicates that the unidirectionality
of the HTML hyperlinks is rather unnatural: namely, the frequency of usage of the back
button. The existence of the back button in every browser already indicates that
moving backwards to the origin of a link is a very important action in Web navigation
and thus needs to be modelled. The fact that the back button is one of the most
frequently used navigation actions also indicates that users do have a concept of
"moving backwards" on the Web, even if this concept is not a part of the underlying
hyperlink model.

Another shortcoming of the HTML hyperlink model is that it does not explicitely define
the action that the user agent is performing as a result of the user activating the link.
While originally, the current page is simply replaced with the destination of the link, it
may also be that the content of another frame or window is replaced, or a new window
is opened, in which the target is displayed. Other possibilities are jumping to another
section in the same document (possible in HTML, but not explicitely modelled) or
adding the contents of the target in the current document at the location of the link.
Furthermore, the user may choose to open a new window for the target as well as just
storing the target to disk, or any other of the previously mentioned behaviors.

Even though better hyperlink models that contain such functionality do exist (for an
example, see [XLINK]), these are currently not very broadly used on the Web, which

Towards an Integrated Approach to Collaborative Web Usage 34

limits the usability of an application relying on these advanced models significantly.

Finally, a user may also choose to manually enter an URI that shall replace the
currently displayed page (or be displayed in a new window). In this case, the new
document is usually not related to the previously displayed document - however, such
an action may also be seen as following a hyperlink.

2.3.3 Session History

Another concept that is somewhat related to findings in chapter 1.2.1 is that of a
session history. From the fact that the recurrence rate has been very high in the
experiments mentioned there, it can be deduced that the documents a user has visited
are very important, and it may follow that the same applies to documents visited
within a community of users with a common goal.

A user’s history is the sequence of navigation actions the user has performed while
browsing the Web. These navigation actions can be accumulated in sessions. There are
a few natural attributes of sessions, including:

e start/end time and therefore duration
e entry point (first visited document)
e the visited documents

Furthermore, the user may add information to the session to make it more useful for
later reuse and finding it among a large number of sessions:

e a name and/or description
e a type of session (e.g., searching for particular information, browsing to get an
overview)

The actual history (/.e.[id est], what the user did during a session) can be stored in
many different ways and it seems that there is no unified approach that suits all needs
perfectly. Five approaches shall be outlined here:

e Time-Oriented Model ("simple event logfiles"):
All actions (i.e., following a hyperlink, clicking the back button, opening a new
window etc.) are stored sequentially in the order in which they are performed.
This is the most simple and straightforward way of storing User Sessions. |t
requires no particular logic except capturing those actions with all their relevant
parameters and storing them. An advantage of this approach is that no
information is lost, as the user input is completely stored and can thus be
completely reproduced. However, for most applications these logfiles will usually
have to be converted into one of the following models because they contain too
much information with too little structure. The underlying model is a simple list.
This model could be considered the generic model for representing sessions but
cannot be used itself for most applications.
e Display-Oriented Models:

In this model, the windows and/or frames which are used to display the content
are the central element. Within such a window or frame, any of the other models
could be used for storage. For example, some structure could be added to the
time-oriented model by grouping the actions according to the locations where
they take place (e.g., frames and windows). This model is quite useful for
capturing parallel sessions, where the user uses multiple windows and/or frames
at the same time. One way of displaying the data in this model is by sequence

Towards an Integrated Approach to Collaborative Web Usage 35

diagrams as they are defined by the UML[Unified Modelling Language]. Each
window and/or frame is modeled as an object. Links can be modeled with
method-calls either on the same window or pointing to another window. New
windows can be opened (object construction) and closed (object destruction).
One way of representing this model is within some sort of matrix or optimized
matrix (the resulting matrices are always very sparse, thus it makes sense to
only store the elements that actually contain information). In such a matrix, the
columns are the windows and/or frames and the rows can store pages, links or
actions in a timed order. Two elements on the same row have happened
concurrently, or represent a concurrent state (e.g., two pages being displayed at
the same time in two different windows).

e Document-Orientated Models:
The document-oriented model puts the pages the user visits into a tree- or
generic graph structure. Each new page is stored as the child of the page that it
has been linked from. The hyperlinks in the document are the edges in the
representation. While the nodes in this model are relatively simple
(representation of the document, e.g., by its URI), the edges can get quite
complex if no information shall get lost. For example, there may be different
instances of hyperlinks in the source document pointing to the same target
document, and it may be important to be able to distinguish those (of course, this
problem exists in all approaches - but it is special in this case as such information
is stored in the edges). Also, the specific action that is taken when a user uses a
hyperlink may have to be stored (e.g., replace current document, open target in
new window, save target to disk) and in many cases this may be very hard to
model within a simple tree.
Furthermore, usage of the back button, manually entering URIs or using
bookmarks or history - in other words: ways of replacing the current document
with another document without using a hyperlink on that current document -
must be modelled somehow and this is not trivial with the given model. There are
a lot of options for storing new windows, cycles and other behaviour common to
browsing the Web, some of which would require giving up the tree structure. For
example, if two nodes pointing to the same URI are considered identical, using
the back button would create an edge to the parent node of the current node.
Therefore, the document-orientated model is not even one model but actually a
rather general class with a diversity of possible instances. An in-depth discussion
of this subject is beyond the scope of this work.
Document-oriented models may provide a very good basis for an intuitive
graphical representation of a user’s history, as it is probably close to how users
perceive their own browsing behavior.

¢ Link-Orientated Models:
As the edges in the document-oriented model may become quite "heavy", an
alternative may be using the way a document is reached (e.g., hyperlinks) as
nodes, and the actual documents as edges. That way, edges contain only little
additional information (URI of the document should be sufficient) and the nodes
can be quite complex. While this may result in a more "natural" graph (rich
nodes, light edges), and solves a few problems (e.g., manually entering an URI or
using a bookmark can be modeled nicely as a node to which the resulting
document is attached as an edge), it cannot be used to represent the most
interesting structures in the Web: documents that link to many other documents
can become "hubs". Therefore, this model is probably not useful for most
applications. However, it leads to another option where both documents and links
are modelled as nodes:

¢ Document-Link Models:
The synthesis of the previous two models is a directed graph where both

Towards an Integrated Approach to Collaborative Web Usage 36

documents and links (i.e., transitions between documents and events that cause
documents to be displayed) are represented as nodes that are connected with
simple edges. This approach has none of the limitations the previous two
approaches had and could be used for visualizing the user history as well as
analyzing how the Web is used. As the time-oriented model is sufficient for the
present work and document-link models are much more useful with graphical
visualizations that are not within the scope of this work, further work should
develop actual models based on this approach.

For a more in-depth discussion of user sessions and browsing contexts see [Kraus].

The session history is always recorded passively, without user interaction. However, for
privacy reasons the users should be given the opportunity to switch history logging on
and off and feedback should be provided about the state of history recording. For
information on whether this feature is implemented in current browsers, see appendix
B.

A format that could be used for user sessions is [LOGML], which is based on [XGMML].
However, this format does not provide means to capture the user actions and thus
would have to be enhanced significantly for this purpose.

2.3.4 Bookmarks

While the session history is recorded passively, without user interaction - and thus,
there will usually be a lot of useless information recorded - bookmarks (also known as
favorites or hotlists) are actively created by the user when he has found a page he
finds interesting and that he thinks he wants to revisit.

Aside of the location of the document that the bookmark represents, further
information may be useful for later retrieval:

title of the document

thumbnail representation of the document
date of bookmark storage

date of last visit

number of visits

description, keywords, categorization

One problem that occurs in multi-user-environments is that of identity: with a single
user, the identity of the bookmark is simply given by the document it represents. With
multiple users, however, there may be different additional information, so that either
some concept of ownership needs to be implemented, or multiple instances of
bookmarks to the same document need to be stored (and the relationship between
them somehow needs to be stored as well).

While bookmarks are usually stored separately from the history, having bookmarks
that are connected to the history might provide some additional context which can be
helpful. However, as this is further additional information making the bookmark much
more specific, the problem of identity becomes even worse unless it is again defined by
the document (that is two bookmarks pointing to the same document are considered
equal).

Towards an Integrated Approach to Collaborative Web Usage 37

2.4 Commmunication

In a system that supports collaborative Web usage, multiple types of communication
can be thought of. The first important dimension to consider is asynchronous vs.
[versus] synchronous communication. In asynchronous communication, the recipient
receives the messages independently of the sender, possibly at a much later time.
Sender and recipient need not be online simultanuously, and messages are stored
persistently. Typical examples are mail, eMail, newsgroups and fax messages. A
message on an answering machine is also a piece of asychronous communication.

With synchronous communication on the other hand, all the participants of the
communication need to be present at the same time. Messages are received instantly
and usually responded to quickly. A typical aspect of synchronous communication is
that it is less structured than asynchronous communication, and the messages are
usually much shorter. While asynchronous communication must be stored persistently
by principle, most synchronous communication is not even suitable for being stored for
later review due to its lack of structure. In fact, if such synchronous communication is
stored persistently and made accessible to future recipients, it automatically becomes
a form of asynchronous communication. Examples include face-to-face conversations,
phone conversations or online chats.

Another important dimension is moderated vs. unmoderated communication. While the
common form of communication is unmoderated, an intermediate moderator can
improve the quality of the communication by filtering messages that are not
appropriate for the given context. Such a moderator may be a human being that gets
messages for review, but it could also be a software agent that filters messages, for
example if they contain certain keywords. Moderated synchronous communication may
have sufficient structure and quality to be stored persistently and thus be reused as a
form of asynchronous communication.

Another important question concerning communication is whether it’s one-to-self, one-
to-one, one-to-many or many-to-many. For the present context, storing notes is also
considered communication. That is the first case: one-to-self. These are messages that
only the author of the message reads. While such communication is usually referred to
as notes, considering this a special case of communication provides a good basis for
integration of originally different things. A more typical form of communication is one-
to-one, where two people communicate with each other. These two forms of
communication can be considered non-public. Private chats or eMail are typical
examples.

If there is one author and many recipients, with no or limited possibilities of the
recipients to give the author feedback, that is called one-to-many communication. An
example within the context of a system for collaborative Web usage are notes stored
on Web pages, that are publicly visible. A more general example is the publishing of
Web pages itself.

A typical example for many-to-many communication are mailing-lists or newsgroups.
Within the given system, communication within communities will usually be of that
nature.

Finally, and partly related, is the scope of communication. While in one-to-self and
one-to-one, this is restricted by the type of communication, the information from one-
to-many and many-to-many communications may be accessible to few or many

Towards an Integrated Approach to Collaborative Web Usage 38

people. For example, an annotation on a document is usually an instance of one-to-
many communication. However, it may be visible only to a certain community or to all
visitors of the document. In this respect, one-to-self communication can be seen as a
special case of one-to-many communication, where the scope is only the author
himself.

2.5 Categorization

In a system for collaborative Web Usage, categorization plays an important role in
many of the subsystems. A very good way to keep bookmarks usable is putting them
into categories. If the number of communities exceeds a certain threshold, only
categorization of communities will help the user find a community he is looking for (or
finding out that community does not exist). Finally, if messages are stored persistently,
communication will be much improved by allowing the user (automatically) putting the
messages into folders, which are in fact again: categories.

A particular problem that has to be solved in a multi-user environment is that there
may be a lot of categories, possibly too many for a single user to keep up with.
Furthermore, often there are different ways of categorizing the same things - often
more a matter of taste than something that can be decided once and for all. Thus, a
mechanism is needed to reduce the cognitive overload with too many categories for a
single user while still allowing every user to access every category if they need to. In
particular, if different ways of categorization exist, it must be possible to have the
coexist without confusing users.

A solution to this problem is keeping a general tree (or possibly a general graph) that
includes all categories of all users, and user specific views that include only a subset of
the general tree. |If a user adds a category, he needs to decide where it belongs in this
general tree (that is, which is the parent category of the new category). Thus,
consistency is assured as it is not possible to add categories without awareness of the
context (unfortunately, this does not prevent users from accidentally or intentionally
putting categories where they do not belong). It may be useful to allow the same
category having multiple parent categories (breaking up the tree structure into a more
general graph).

This general tree may grow to any complexity. For each user, however, there is a
subset of this general large category tree, that only includes those categories that the
user is interested in.

From the perspective of datastructures, this means that in addition to the general tree,
the user configurations need to be stored. The user specific tree configuration does not
contain any categories - only whether or not a category from the main tree is displayed
below a specific parent category. It is important, however, that it is not only possible
to hide subtrees, but also paths. That way, it is possible to hide a complex structure
while still providing access to a category anywhere within that structure.

Furthermore, the items stored under a given category C may be visible to its parent
category D if C is hidden (inheritance of a category’s items to its parent category).
That way, all items are always available. However, hiding items with their categories
must also be possible (this depends on the particular use case).

With such a special tree, additional actions are required, while in common trees, there
are only three interesting actions: select an item, show children and hide children. For

Towards an Integrated Approach to Collaborative Web Usage 39

the multi-user-tree, the following additional actions need to be defined:

e Hide Node and its Subtree: Hides a node (e.g., category) and all its ancestors
from the view. If the edge is store (parent node and node), this can be used to
hide a category in one place while keeping it below another category.

e Show all Nodes: This is the reverse action to the previous action. As hidden
nodes cannot be selected, only their parent nodes can be selected and all their
children be put back to view. Depending on the user interface implementation, a
more convenient method could be some sort of popup menu that allows selection
of the desired node from a list of all hidden nodes of a given parent node.

e Hide Node and inherit Children: This can be used to flatten a deep tree. The
node itself is hidden and all its children are shown as children of the node’s
parent node. However, the weight of the parent node may be significantly
decreased this way. One consequence of the availability of this action is that the
tree should be designed as deep as possible, with only few children for each
node. While flattening such a tree is very easy with this feature, making a flat
tree deeper is not possible.

e Shortcut Path: While in the previous action, all children of the hidden node are
added to the node’s parent node, this only adds a specific child. If repeatedly
done, this allows removing complexity significantly, making a dense and rich tree
very sparse.

e Inherit / Hide Items of Invisible Categories: A distinction must be made
between categories and the items that belong to these categories. If this
distinction is made, it is possible for each node that is hidden, to either hide or
include the items belonging to the category represented by that node. With
shortcut paths, it is necessary to allow inheriting items over multiple levels.

For the usage of such a categorization in a system for collaborative Web usage, it may
be useful to allow users using the view configuration of their fellows. That way, they
can profit of the effort others have put into customizing their categories.

Furthermore, default profiles could be provided with communities, so that each
community could have its own categories while still being compatible with both its
members’s categories as well as the global set of categories (of which the member’s
categories are a subset). That way, a user could choose between the personal profile of
himself or one of his fellows, and a public profile of one of the communities he is a
member of.

Future work may elaborate further on this, as researching this new approach to
community-trees was not a priority of this thesis.

2.6 Privacy and Security Issues

As the system is intended to capture a lot of information of and about its users, privacy
is a major concern. In this section, the problem is generally discussed without going
too much into details or solutions of the problems introduced. Privacy and security
form an own scientific discipline which lies beyond the scope of this work - the section
is included to point out the relevance of this discipline to the present work.

While a maximum protection of privacy may be an important criterion for many users
(see [Pitkow]), this conflicts with the intention of making the Web more personal and
support collaborative Web usage. Thus, the challenge in this issue is balancing the
protection of privacy with the display of personal information. One dimension of this is

Towards an Integrated Approach to Collaborative Web Usage 40

how much data is available about each user to which other users. [Terveen] suggested
letting the users progressively reveal more about themselves, while they get to know
the fellow users better (this is common practice with dating services).

Another, but more fundamental, dimension is the architecture of the system, which has
a major effect on the applicability of privacy concerns. If data is captured and stored
on the clients alone, private data stays on private computers and as long as no one
gets access to the computer, no privacy problem arises. This approach has been
followed for instance by [Laurent]. However, collaboration can only take place if users
exchange their data via other media (e.g., eMail or Web pages) - which is cumbersome
in this approach. In fact, such a system does not support collaboration by itself, at all.

A better solution is capturing and storing the data at some place that is only accessible
by the team involved in collaboration. That way, the team members can only access
other team members’ data. Of course, the team members must have a trusty
relationship. In this scenario, privacy issues do arise - however, it is an environment
which is relatively easy to control and find consensus in, about measures against
misuse of the data. A disadvantage is that team members can only use the system
within the given boundaries.

The most challenging architecture is a system that can be accessed from anywhere on
the Internet. This does have some advantages: teams may connect from all over the
world, users can use their accounts from all over the world - a lot more people use the
system and thus a lot more information is available. Some possible features (e.g.,
collaborative filtering or synchronous communication with people on the same Web
page) only make sense or even only are possible with a very large user base, which
can only be attained in such an environment. However, privacy issues become a major
concern with that architecture. Not only must it be secured well against hackers which
may steal and misuse the data (which is much harder when the system resides behind
a firewall). The intended usage is also problematic, as most users will not know
anything about the other users.

In [Bellotti], a very useful design framework is given, which is based on contro/ and
feedback. Users should be able to control what information about them becomes
available to which other users and when information is being captured, the users
should be provided with feedback on this. A system for collaborative Web usage must
implement mechanisms that allow its users to control all data that becomes available
about them. To a certain extent, forcing a user to explicitely grant other users access
rights already provides him with feedback about what others can find out about him.
Further feedback (e.g., if someone actually views the available information) is probably
not needed unless users forget about their own settings after some time.

This section illustrates that the architecture plays a major role when privacy and
security concerns shall be discussed. In fact, there are many ways to build a system
for collaborative Web usage, and depending on a chosen architecture, sets of features
are possible or impossible. Therefore, the next section deals with possible architectures
of which one is chosen. After that, a set of features for a prototype built on that
architecture is discussed.

Towards an Integrated Approach to Collaborative Web Usage 41

3 Possible System Architectures

This sections discusses the options for an architecture of the system. There are
basically two logical units for which decisions have to be taken. The first logical unit is
called server, as it is responsible for collecting, keeping and distributing the data
required for collaboration. The major criterion such a server must satisfy is the ability
to collect data on where on the Web a particular user is currently located. This also
includes the ability to create a history of the user’s action on the Web. Keeping and
distributing the data is much simpler and much more common to servers, and thus
needs less attention.

The second logical unit is termed client. Depending on the choice made for the server,
there may be no particular criteria for the client - in fact, some of the server centric
options require no particular client implementation at all. However, data can also be
collected on the client - and it turns out that this is even much more useful. In that
case, clients can implement the required server functionality which leads to peer-to-
peer systems. However, peer-to-peer architectures are included in the server centric
approaches as the implemented functionality is typical for servers.

If a client centric approach has been chosen, the major decision that must be taken is
how that client is technically implemented. Among other things, the client must
implement common browser functionality, and thus a few possibilities to achieve that
are introduced.

A major design goal is to make using the system as easy, comfortable and
unobstrusive to the user as possible. Furthermore, the current location of the user on
the Web needs to be determined exactly. The current location is required for any
functionality where users who concurrently browse the Web shall collaborate (e.g.,
synchronous communication with people on the same Web page or Web site).

As system architecture is much easier to understand with visual illustrations, most
options are discussed based on deployment diagrams from the UML vocabulary. UML
has been chosen because it is the de facto standard for expressing system architecture
and the vocabulary is simple but still sufficient for the given purpose.

Some of the following approaches (except peer-to-peer and metabrowser) are also
discussed in [Marais], [Cabri], [Pitkow], and [Srivastava].

3.1 Options from a Server Centric Perspective

Firstly, four options are introduced, which can be considered server centric. That is, a
perspective is taken where data collection is seen from the server. This perspective has
some implications on the solution which will be discussed at the appropriate place. A
more client centric perspective is subject of the following section.

3.1.1 Web Server: The Source of Content

As all Web servers store access logfiles, which could be used to infer usage data as
described in chapter 1.2.2, locating a server for the system right on a Web server
comes to mind. This may also simplify storing, manipulating and including annotations
to the documents, as they are easily accessible on the location where they are stored,
a reason why some of the solutions introduced in chapter 1.2.5 follow this approach.

Towards an Integrated Approach to Collaborative Web Usage 42

As figure 3.1.1 illustrates, in addition to the HTTP server the components required for
the functionality of the collaboration system are installed on the Web server machine.
No modifications are required on the machines of the users of the system.

Collaborative Web Server

User Management
Authentification.

% Communication Engine

i

permissions.

User's PC

Web Browser
e.g. Opera

communicales with

no collaboration sppport

refion client

Web s ervér

=

Serviets/JSPs
Control / View

/ Community Management
|y

HTTP Server
e.g. Apache

History Management
Manages session
history and bookmarks.

=

Web Server 1

HTTP Server
e.g. Apache

Web Server 2

HTTP Server
e.g. Apache

Web Servern

HTTP Server
e.g. Apache

Components for Collaboration

[LI

-~ External Components

[3.

=

I

Special features for collaboration are only

supported for the content from the

collaborative Web Server - Web Servers
- 1 to n cannot be used in a collaborative

manner

Figure 3.1.1: Illustration of Locating the Server at the Web Server

The major limitation of this approach is that it can only be used with a very limited part
of the Web - namely the content that is served by the Web server where the system is
installed. While this may be acceptable in certain environments (e.g., students
participating in a lecture, where collaboration is only supposed to take place concerning
the lecture materials stored on the server), it does not fit the decentral nature of the
World Wide Web. Even in the environment given as example in the previous sentence,
this limitation becomes apparent as soon as the lecture material links to pages on
external servers.

One possible extension to this approach would be a system that can and will easily be
installed on many different, possibly related Web servers. If such a system would reach
a certain acceptance and be spread widely on the Web so that many servers accessed
(e.g., Web servers of many Universities) do in fact support this kind of collaboration,
the limitation would be overcome. However, it is not very probable that such
acceptance is reached. Administration of Web servers already is a complex task, and
adding such a system would probably be vetoed by most server administrators. This
would be a Web server based approach enhanced with peer-to-peer services as
discussed in chapter 3.1.3.

Finally, the data collected in logfiles may not be sufficiently exact concerning the
current location of users on the Web. For example, if a user clicks the back button, he
leaves the document he is currently visiting, without notification to the server. Thus,
the server still treats the user as if he still was on that page (e.g., show the user as a
current visitor, potentially send messages from a chat about that page to the user).
Even worse: The previously viewed document is usually recovered from the browser’s
cache, so the server is not notified with the new location. This would prevent any sort
of synchronous collaboration taking place on any of the documents (the original

Towards an Integrated Approach to Collaborative Web Usage 43

document as well as the document reached by clicking the back button), and the
problem occurs with documents cached at the browser as well as with documents
cached at an intermediary proxy.

3.1.2 Proxy: Some Intermediary

In this approach, instead of having the components of the system on one Web server,
they are located on a proxy server. This solution has also been used for annotation
systems as described in chapter 1.2.5. It removes the major limitation of the previous
approach because all documents retrieved through the proxy (that is all documents the
user retrieve) are automatically included, not only those of a specific Web server.

The architecture looks quite similar to the previous approach as can be seen in figure
3.1.2.

User's PC Collaborative Proxy Server

Web Browser
e.g. Opera

% Communication Engine

i

&

e, i
ik

Must be configured for use of
proxy. Cannot use another proxy.
Cannot access pages without
collaboration system knowing
about it!

W
b
s
7 Ler

Proxy Page Processor
No rewriting needed

=

A

L
~

User Management
Authentification
permissions

v

Servlets/JSPs
Control / View

=

Community Management
———

z \
/\;\Do(al\or‘ J

ecial col

=

History Management
Manages session
history and bookmarks.

&

A

Web Server 1

HTTP Server
e.g. Apache

&
=)
e‘a“

1 gets pages from

Web Server 2

HTTP Server
e.g. Apache

Components for Collaboration Bl

~

Web Server 3

HTTP Server
e.g. Apache

Exlernal Components Bl

g

03

Web Servern

HTTP Server
e.g. Apache

Figure 3.1.2: Illustration of Locating the Server at an Intermediary Proxy

While in the previous approach all users accessing the given Web server could take
advantage of the installed system, in the proxy-based approach only those with access
to the proxy could use the system. Whether or not this is an advantage depends on
what the system shall be used for:

If collaboration shall take place among a group of people that accesses the Internet
from a company behind a firewall, for example, and all the people who shall collaborate
are behind that same firewall, the proxy can also be installed behind the firewall. That
way, the users and their data are protected from access outside of the firewall, which
is @ major increase of privacy and security.

However, if people from different locations and networks need to collaborate, this may
be a restriction. The system could be installed accessible from anywhere on the
Internet, so theoretically, the problem could be solved. However, if some of the users
are behind a firewall that allows accessing the Internet only via its own proxy, they
cannot use the system at all.

Towards an Integrated Approach to Collaborative Web Usage 44

Another disadvantage of this approach is that the Web browsers of clients must be
configured to use the proxy, and just like with Web servers, many of the events that
may be interesting cannot be captured (e.g., usage of the back button). While there is
no caching of documents on other proxies (if there are no additional intermediary
proxies between the collaborative proxy and the client), the problem with browser
caches remains and therefore, the current location of the user cannot be determined
with sufficient accuracy.

3.1.3 Client: Peer-to-Peer

While in peer-to-peer systems, no dedicated server exists - and thus this option may
be expected in the following section (chapter 3.2), it is located here because it deals
with distributing the data and can be used as an extension to the previous two
approaches. Furthermore, it is seen as the complementary of the independent server
introduced in chapter 3.1.4.

In the peer-to-peer approach, the data is distributed among many nodes and each
node only stores the data it is responsible for. In the diagram shown in figure 3.1.3,

this is the data specific to a user - as the peers are the user’s clients, located on the
user’s machines.

(Opticnal) Mediator Server User B's PC with Collabcration System Installed
Mediator
Simplified for N — Distributes Client Communication Engine User Management
saving space on :I Adresses Authentification,
the diagram W permissions.

|
] Community Management

User A's PC with CollaborationSystem Installed

Q.-
Collaboration Application Collaboration Application
Own Browser or 0." share dala E Own Browser or
Plugin or other Plugin or other

ke 7

o

History Management
Manages session
history and bookmarks

i o

Components for Cellaboration Il.

External Components %

gets pages from
gets pages from

All user-specific dala is stored on the
Web Server 1 Web Server 2 Weh Servern user's machine. Collaboration takes place

HTTP Server HTTP Server HTTP Server belween the different machines. That way
e.g. Apache e.g. Apache e.g. Apache a very high level of security can be reached.
Addresses of collaborators can either be

shared "manually” or via a Mediator Server.

Figure 3.1.3: Illustration of a Peer-to-Peer Architecture

A similar architecture can also be used to overcome some of the problems of the
previous approaches. For example, if many Web servers are enhanced with a system
for collaboration, the collaboration systems may communicate and exchange data
about the communities, users, and so on. If a user moves from one Web server, to
another one, the systems may keep track with the user and thus assure continuity in
sessions that exceed the boundaries of a single system.

If many proxies would interact in a peer-to-peer-like manner, they might be configured
to pass firewall boundaries that users are not allowed to pass (e.g., the systems may
communicate via HTTP, possibly through firewall-proxies). Each node could be

Towards an Integrated Approach to Collaborative Web Usage 45

responsible for the users accessing the Internet via that node, and that way, users
from different domains may collaborate.

In summary, the peer-to-peer architecture can be used on different levels, enhancing
approaches that are very limited otherwise.

One disadvantage is that such a system is much more complex than centralized
systems. For example, if there are only systems installed at the clients, these systems
somehow need to find out about their peers. One way of achieving this - which may
also be interesting from the privacy and security perspective - is only allowing access
to and from other systems that the user has explicitely given to the system. For
example, a user A might enter the IP adress of a peer system (of user B). User B then
gets notified and has to grant access permissions to A.

A more comfortable solution is having a mediator server that all clients register with,
as shown in figure 3.1.3. Clients only need to know the mediator server and can then
provide the user with information about all other users registered with the same
mediator server. This improved comfort comes at the price of less secured privacy
because the mediator server may store information about its users. Even if that
information is just that a collaborative system is installed on the given client, special
care must be taken that no private data is stolen from the client itself.

If such specialties are taken into account, peer-to-peer systems may however be the
best solution to ensure privacy. No personal data needs to be stored on central
servers, and the data may only be sent to other systems when the user explicitely
allows sending the data. If it was not for time constraints concerning the
implementation, this would be the preferred option from the server perspective. For
pragmatic reasons, the architecture is based on the much simpler solution: a single
independent server.

3.1.4 Independent Server

The option complementary to the peer-to-peer solution is an independent server. Such
an independent server centrally collects, stores and distributes all data relevant to the
system. As such, it may be a major concern to people worrying about their privacy.
However, the independent server is much easier to implement and has none of the
disadvantages given for implementations on proxies or Web servers, except possibly
the problem mentioned with firewalls in chapter 3.1.2.

The basic idea of that architecture is illustrated in figure 3.1.4, and close inspection of
that diagram also shows the major limitation of that approach: an independent server
on its own has no means of collecting Web usage data. While with proxies and Web
servers, the data is accessible at the server itself, an independent server is dependent
upon a component that feeds it with data on the current location and/or history of its
users.

This again illustrates how the independent server is on the same abstract level as the
peer-to-peer solution, which is more general than Web server and proxy based
approaches. The independent server could get its usage data from modified Web
servers or proxy servers. The actual system would then reside on the independent
server, while the modifications on Web or proxy servers are minimal (e.g., letting the
independent server access the logfiles).

The preferred solution - due to the restrictions in Web server and proxy based

Towards an Integrated Approach to Collaborative Web Usage 46

approaches, however, is that already shown in figure 3.1.4: a component residing on
the client, which collects the data and sends it to the server. While this answers the
question, who is responsible for collecting, storing and distributing the data (the
independent server), a new question needs to be handled: how is this data collected on
the client. This is the subject of the next section.

Independent Cellaboration Server

Communication Engine User Management
" Authentification,
permissions.

i

% Community Management
User's PC /
Collaborative Client Applicaticn Server
May be a custom browser o communicates with ‘LP Provides Interface Glistony Management
or plugin or parasite. dolldboration client collaboration servel o Functionality Manages session

history and bockmarks

Components for Collaboration Il.
9@,‘5‘

External Components %

1 gets pages from |
1 gets pages from |
=3
&
Ay
:?R

If a client component exists on the client machine,
Web Server 1 Web Server 2 Web Server n pages can be directly retrieved (o that client. If the

HTTP Server HTTP Server HTTP Server clientis thin (e.g. meta-browser), the server retrieves
e.g. Apache e.g. Apache e.g. Apache the pages and rewrites the URLSs 1o assure links
remain in the system

Figure 3.1.4: Illustration of the Architecture with an Independent Server

3.2 Options from a Client Centric Perspective

If data is not collected on a Web server or proxy, it somehow needs to be collected on
the client. Four options of how this can be achieved are discussed in this section.

3.2.1 Custom Browser Implementation

A custom browser implementation would be the solution with the best possibilities of
capturing data and integrating the various aspects of collaboration. The browser could
communicate with an independent server as shown in figure 3.1.4, or implement a
peer-to-peer communication model as shown in figure 3.1.3. All features could be

provided under an integrated user interface tailored specifically to the purpose of
collaborative browsing on the Internet.

A very obvious disadvantage for the users, however, is that they have to install a new
piece of software (which may not even be possible in certain environments) and they
also have to learn using that new software. If they have a favorite Web browser, they
are unlikely to change their habits and use a new system instead.

Furthermore, implementing a custom browser is a very complex and challenging task,
which is way beyond the scope of the present work. Rendering HTML is a very complex
task already, let alone handling of scripting languages, style sheets and providing an
interface for commonly used plugins. Furthermore, the Web is a very quickly evolving
technology, and thus a custom browser would have to be updated regularly to keep up

Towards an Integrated Approach to Collaborative Web Usage 47

with these changes. Even though external components could be used implementing
some of the features, a complete browser still requires a lot more time than is
available (and some of these components are quite expensive).

3.2.2 Plugin for Existing Browser

The implementation effort is significantly reduced by only implementing the additional
functionality the collaborative system requires as a browser plugin. This also solves the
problem that users would have to learn a new interface.

One disadvantage of the previous approach remains, however: installation on the client
is required, and this may not be possible in certain environments. Furthermore,
browser-plugins are usually just for enhancing the types of media that can be viewed
with the browser. A system for collaborative Web browsing may require access to the
browser which the plugin interfaces do not support (e.g., persistence over multiple
documents).

3.2.3 Parasite to an Existing Browser

One very interesting option has been used by [Marais] (see chapter 1.2.6). The idea is
accessing a browser (e.g., Netscape or Internet Explorer) via a published API. This
provides more control than using a plugin, and it is much easier to keep a persistent
state over various sessions. Basically, the browser could be used for rendering the
HTML pages and the collaborative features could be implemented by the parasite.

One major problem with this approach, however, is that such an APl must be
supported both by the operating system and browser implementation. While such an
APl is available under recent versions of Windows, it is proprietary and may change in
future versions of the operating system. Furthermore, restriction to the Windows
platform is not acceptable because in the academic environment where the system is
tested, Linux is much more common. Therefore, this option is also cancelled.

3.3 Selected Architecture: Meta-Browser as Web
Application with Independent Server

A new approach is needed, as all the previous options are either incomplete or fail to
meet the criteria: ease and comfort for the users of the system and exactly
determining the current location of the user in the Web. This approach will be
described much more in detail, including some specific technical issues, because the
approach implies some (technical) questions which must be answered before the
approach can be accepted as the preferred solution.

The idea is to implement the user interface of a Web browser in HTML and JavaScript
on top of any common Web browser, the Web pages making up the user interface
being served as a Web application by an independent collaboration server. Thus, the
user can use his favorite browser and needs not install any additional software.
However, as the HTML user interface replaces the user interface of the Web browser,
all browsing events can be captured. The user can easily choose between tracked
sessions and non-tracked sessions by simply opening a new ("clean") browser window
for non-tracked sessions.

To start a tracked session, the user only needs to open a start-page, which can easily

Towards an Integrated Approach to Collaborative Web Usage 48

be bookmarked. This start-page is served by the collaboration server which also acts
as proxy for the content relevant to collaboration. After logging in (which is required
for the collaboration features), the system is started by opening a new browser window
and loading a special frameset that mimics a browser’s user interface, as described
below.

The architecture of such a system is shown in figure 3.3 (1). Note that the proxy-
server component is called page processor in the system, as its main responsibility is
processing the documents (it also retrieves and forwards them, just like a proxy, but
this is not what makes this component special).

By using HTTP as communication protocol between client (meta-browser) and server,
there are also no problems with firewalls. Even if HTTP proxies are located between the
Web browser and the system server, no problems are to be expected as the whole Web
application is served via standard HTTP - just like any other set of Web pages. If a user
decides that he will use the system as default, he can use the system’s start-page as
the browser’s home page. While common usage of the system does not require any
browser configuration, setting a new home page can be seen as configuration effort -
but it is simple and optional.

Independent Cellaboration Server

User's PC Communication Engine User Management
N Authentification,
permissions.
Wieb Browser / /[\
e.g. Opera i
| 0." communichtes with 1 % Serviets/JSPs % Community Management
collaboration client Web server

Control / View =

displays

rewrites URLs, caching.

History Management
Page Processor Manages session
Collaborative Web Application Loads extemal pages history and bookmarks
A set of documents

non-cdlaborative Browsing

displayed in the
Web Browser 1‘;
£
@ Gety o Components for Cellaboration Il.
=4 G
Lo s wﬁage
a\da%? L Sf"o;,, External Components %
o =
\%0‘@ 5
~) o
Web Server 1 Web Server 2 Web Server 3 Web Server n

HTTP Server HTTP Server HTTP Server HTTP Server
e.g. Apache e.g. Apache e.g. Apache e.g. Apache

Figure 3.3 (1): Illustration of the Meta-Browser Architecture

The presentation required for browsing is simply a browser window without any
navigation controls containing three frames. The upper, fixed size frame contains a
combination of HTML and JavaScript to model the navigation user interface of the Web
browser. This will be referred to as navigation frame. It includes: a textfield for
entering URIs, back and forward buttons, a button for opening new windows and
bookmark controls (adding bookmarks, opening bookmarks etc.) and controls specific
to the system for collaborative Web usage (e.g., for organizing communities, accessing
communication features and logging off). The center frame contains the actual content
of the Web pages viewed by the user. It is referred to as content frame and may
contain any number of sub-frames, depending on the actual Web content. The content
frame is equivalent to the area of a normal browser, which is used to display the Web

Towards an Integrated Approach to Collaborative Web Usage 49

documents. Finally, there is an orientation frame in the lower part of the window. An
example of what such a meta-browser may look like is given in figure 3.3 (2).

When the user clicks on a link in a document, instead of directly sending the request to
the original server, a little JavaScript method is called which does the following:

1. Update the location textfield in the navigation frame (where the URI of the
currently displayed document is shown).

2. Send a request to the independent collaboration server, with the URI of the
requested document as parameter.

3. The collaboration server, acting as a proxy forwards the request to the original
server.

4. Unlike a common proxy, the collaboration server modifies the response from the
original server so that all links will behave as required (not get the contents from
the original server, but update the location textfield, send request to collaboration
server etc.) This is called URI rewriting, and by doing this, the client needs not be
configured to use the proxy. Instead, the proxy is used for a specific frame (or
window) from the moment the first processed page is displayed at the client
(which happens at the startup of the system) and until the first non-processed
page is shown.

5. The (modified) response is displayed in the content frame or one of its
subframes.

This behavior is transparent to the underlying Web browser and its user.

*.+ teamXweb-Browser ALPHA 5 (TWBrowserC1)

http: e qoogle. def

Content Frame ||

Google

Deutschland

m Bilder Groups Werzeichnis

I = Enwaiterte Suche

= Einstellungen
Google-Suche I Auf gut Glock! = Sprach-Tools
Suche: & Das Weh € Seiten auf Deutsch © Seiten aus Deutschland

Meul Testen Sie Googles do-it-yvourself Werbeprogramm.
Jetzt auf Deutsch und in sechs Wahrungen erhaltich.

Suchtipps - Werbung - Google Toolbar - Alles dber Google - Google.com [Enaglish]

©2002 Google - Suchen auf 2,469 940 6585 Yeb-Seiten

Infos zur Privatsphare.

dandd{Foolboty

Figure 3.3 (2): Screenshot of the Meta-Browser within a Browser (Opera)

Towards an Integrated Approach to Collaborative Web Usage 50

To allow the user opening the link in a new window, an icon displaying a window can
be added behind the actual link. When the user clicks on the icon, an new system-
window is opened, displaying the requested document in its content frame. Another
option that may work with some browsers is modifying the popup menues via
JavaScript.

This solution has another major advantage: only the linked HTML-files go through the
page processor, reducing server-load by using a more distributed approach (unlike a
custom proxy-server implementation which might run into performance problems). The
URIs of resources like images and sound files are not rewritten and thus directly loaded
from the original server. However, with the same architecture, features like blackboard
capabilities for images could be implemented by extending the page processor so that
it handles tags to provide blackboard capabilities as it was done in [Cabri].

Obviously, special care must be taken when pages with frames are displayed. For
example, a page that should be displayed in a subframe cannot be handled by simply
putting it into the content frame because that would destroy the frameset. Also, links
in the content that close the frameset by using "_top" would destroy the navigation
frame, if the target was simply forwarded. If new windows are opened, they must be
wrapped into our system so that tracking does not break. However, this approach also
allows bookmarking any state of such a frameset, which is a major advantage
compared to browser’s bookmark capabilities. Furthermore, while framesets usually
have a single title for all states, the system allows changing the title while browsing
within the frameset (e.g., the original title plus the name of the hyperlink the user
clicked on).

The major limitation of this architecture is that not all Web pages are suitable for being
modified in the required manner. In particular, Web pages using JavaScript, Java,
Flash or other non-HTML based approaches for navigation. While with JavaScript - at
least in theory - rewriting the relevant URIs and parts of the JavaScript code may be
possible, the binary formats of Java and Flash make this more or less impossible. As
the system is targeted to an academic environment, where such navigations are
expected to be less common than in the commercial parts of the Web, this shortcoming
is considered to be outweighed by the advantages.

Another open but less serious problem is how links from external sources (newsgroup
articles, eMail) are handled. If the user copies the URI into the location field, it works -
if the user directly clicks on the link, it does not work. For this, drag and drop of
hyperlinks would be a desirable feature. Even better would be integrating a newsreader
and eMail-client into the system - but that is beyond the scope of the present work.

A very detailed description of the implementation of this architecture is subject of
appendix A.4.

Towards an Integrated Approach to Collaborative Web Usage 51

4 Features for a Prototype

In this section, the features of a system called teamXweb are described. teamXweb is a
prototype that is used in experiments to find out about the usability and usage of a
system to support collaborative usage of the Web. These features were originally
defined in previous work (/Wagner2002]), this updated section describes the actual
implementation.

The original name of the prototype was TeamWeb, but a search for the term TeamWeb
on Google [http://www.google.de] returns about 5,000 pages. With the keywords
TeamWeb, Web, usage and cooperative respectively collaborative still 7 respectively 12
hits are returned, three of the latter sample are pages of the original project’s Website,
though. The other hits link to organization’s Web teams that are responsible for the
organization’s Web presence, independent Web design companies, Web sites about
Web design. NetObjects has an architecture called NetObjects TeamWeb™ which is
used to support collaborative creation of Web sites [NetObjects].

Thus, the name has been changed to teamXweb, the X indicating that this is meant as
the cross-product of team and Web. The new name seems to be unique - at least a
search on Google [http://www.google.de] returns no results, which is a very reliable
indicator that the term is not used at all, anywhere on the Web. The pronounciation
remains the same, however - the X is silent...

4.1 Communities

The key concept for teamXweb are communities. The term community has been
chosen instead of group to point out the broader sense in which the term can be used.
A more in depth discussion of communities was subject of chapter 2.2. In the
prototype, communities are implemented as simple groups of people, and thus the
term is used interchangeably in this section.

Communities are sets of people, for instance a team working on a particular project.
Such groups can be created by users, and other users can join or leave the group at
any time. For enhanced security and comfort secret groups are added, which can only
be joined if their name is known and are not displayed in the community overview.
Furthermore, it is possible to close groups (i.e., make it impossible to join or leave the
group for all users). However, the community may still be visible to others. Finally,
subgroups are only visible to members of their parent groups. This allows a sort of
hierarchy, and in conjunction with the closed groups, a certain flexibility to partition
the user base, which is also a useful feature for the experiment.

Another type of community in the prototype are Web site respectively Web page
related communities. Such communities exist for each Web site and Web page, and
users automatically join and leave these communities when they enter or leave the
Web site or Web page in question. Using communities for this also allows using all the
features available to communities for Web sites and Web pages - in particular
communication (see also chapter 4.4) and community statistics (i.e., who is currently a
member, who was a member before, see also chapter 4.5). This is one of the positive
aspects of integration in the system.

To support collaboration between community members while at the same time
providing a high security for each user’s privacy, users can give permissions to each
community. This gives them control as it has been discussed in chapter 2.6. As default,

Towards an Integrated Approach to Collaborative Web Usage 52

none of these permissions are set. It may be useful to allow users changing this
default, or - if the rights management gets more complex - choose among different
presets for different security levels.

In the prototype, there are user profiles where users can give information about
themselves. While users can choose login names that are completely unrelated to their
real name and thus have a certain level of anonymity, the atmosphere can be made
more personal by using those profiles. However, whether other community members
may see that profile or not is the first permission that must explicitely set for each
community the user is a member of.

The second permission is whether or not other members may see the user’s
bookmarks that are described in more detail in chapter 4.3. In the bookmarks window,
the user can select each community he is a member of, and all bookmarks of all
community members that have given that permission will be merged. It is also possible
to view the bookmarks of an individual member of a community that has given that
permission. In the first prototype, this applies to all bookmarks. However, this is
considered a major limitation and in future versions, it should be possible to assign this
permission per bookmark category. Thus, users can make their bookmarks available to
different communities according to the communities’ interests and according to the
user’s feeling of which bookmarks he wants to keep private and which he wants to be
public.

The same applies to the user sessions in the session history (explained in chapter 4.2),
which is the third permission that can be set. As all of the navigation behavior of a user
is captured in his session history, this is the most sensitive information. Only allowing
users to set this permission for all user sessions, or none is an even more severe
limitation than with bookmarks. However, the prototype had to be as simple as
possible and in the testbed of the experiment, the user base is small enough and users
are aware enough that this issue can be accepted. Furthermore, it could be worked
around by using different users for different browsing tasks.

Towards an Integrated Approach to Collaborative Web Usage 53

4.2 Session History

The session history is the list of all user sessions, ordered as a sequence in time. Each
user session consists of a list of navigation events and browsing states for each window
that has been opened during the session. The browsing states are usually equivalent to
the URIs of the viewed pages. However, with framesets this simple approach is
insufficient: in that case, a browsing state refers to the URIls in all the frames of the
window, and if a single URI (i.e., document) changes, it is a new browsing state.
Navigation events are the events with which each browsing state is entered and left.
The following navigation events are available in and captured by the system:

Navigation Description
Event

Window opened |When the user opens a new window. In most window’s lists of navigation
events, this is the first entry. This event can only occur when entering a

state.
Link followed Whenever a user clicks on a hyperlink of a web page.
Form filled Some sites (for instance, search-engines) use forms so that the user can

enter information. When the user fills such a form and then sends it, some
sort of reply will be sent. The process of filling a form, sending it and
receiving the result is refered to by this Navigation Event.

URI entered When the user manually enters a new URI and retrieves the document
referred to by that URI.

Back When the user clicks on the back button to fetch the previously viewed
page.

Forward When the user clicks on the forward button to fetch the page after the

currently viewed page. As mentioned before, the history (user session)
consists of a list of states and actions ordered in time. The problem of
users going back and forth and branching to new links is irrelavant in this
approach. As an advanced feature, the graph structure of the user session
could be presented to the user for an improved history navigation. Besides
implementation costs it must be noted, however, that many user’s may
have problems dealing with that complexity.

Home When the user clicks on the home button to go to the first state in the list
of the current window in the current session. The session can be repeated
by clicking home followed by a number of clicks on forward.

History State |When the user restores a browsing state while browsing a user session.

restored

Bookmark When the user restores a browsing state by using a bookmark.

restored

Window closed When the user closes a window. This event can only occur when leaving a
state.

Table 4.2: Navigation events captured by teamXweb

A useful feature could be management of the individual user sessions: each session
could have a name, description and attributes like keywords to facilitate finding
previous user sessions. A hierarchial categorization of the user sessions may also be
useful. This feature becomes particularly interesting in the context of communities, as
described in chapter 4.1, because a categorization may facilitate offering some user
sessions to other community members, while others are kept private or open to
another community. Due to time constraints, this could not be implemented in the

Towards an Integrated Approach to Collaborative Web Usage 54

prototype.
The user interface for the history is implemented as follows (see also figure 4.2):

The history is divided by the individual user sessions. A particular user session is
chosen by first requesting a list of sessions for either the current user or one of the
communities the user is a member of (default: the current user). The user can select
the party of which the user sessions shall be displayed from two comboboxes at the
top (row) frame. The first combobox contains the user himself as the first entry,
followed by a list of the communities the user is a member of (not site-communities,
possibly that can be added later as "special feature"). The second combobox depends
on the first combobox and has "all" as the first entry, followed by a list of the users of
the selected community (only if the community allows requesting individual user’s
information, and/or if the user allows requesting such information). If the user himself
is chosen from the communities combobox, or if the selected community does not
allow viewing its users, the second combobox only contains the entry "all".

Community: \TG Betatester j Person: Alle Mitglieder ~
13:20:37 | 13:27:44 | AnzZeigen - Datum: 20-03-2002 (Mi)
13:16:14 13:17:01 Anzeigen Anfangszeit: 11:10:51
13:05:56 13:16:00 Anzeigen Endzeit: 11:21:20
11-12-2001 (Dienstag) Einstiegspunkt: http://www.pms.informatik.uni-muenchen.de/lehre/projekt-diplom-arbeit/
13:21:05 13:55:02 Anzeiden navigation-track/doc/history.shtml
09-05-2002 (Donnerstag) Browser: Mozilla/5.0 (compatible; Konqueror/2.2.2; Linux)
12:10:37 12:11:37 Anzeigen
5 TWBrowser
20-03-2002 (Mittwoch)
o N : 11:20:43 11:21:20 _top Tracking the Navigation Behavior of Web Anzeigen
11:10:5111:21:20 | Anzeigen enteredURL null Communities Als
19 http://www.pms.informatik.uni-muenchen.de/ Bookmark
10-12-2001 (Monta e
(9) lehre/projekt-diplom-arbeit/navigation-track/doc/ speichern
11:27:37 | 11:31:40 Anzeigen projectThesis.shtml
08-05-2002 (Mittwoch) 11:19:39 11:20:43 _top Tracking the Navigation Behavior of Web Anzeigen
ac. R o followedLink enteredURL Communities (Table_NavigationEvents) Als
10:15:5310:28:17 | Anzeigen http://www.pms.informatik.uni-muenchen.de/ Bookmark
10-12-2001 (Montag) lehre/projekt-diplom-arbeit/navigation-track/doc/ speichern
projectThesis.shtml £Table_NavigationEvents
00:05:34 00:10:46 Anzeigen
11:19:31 11:19:39 _top Tracking the Navigation Behavior of Web Anzeigen
09-12-2001 (Sonntag) followedLink followedLink Communities (tablesIndex) Als
.5g. .04~ i1 http://www.pms.informatik.uni-muenchen.de/ Bookmark
23:59:21 00:04:12 Anzeigen P o—
= lehre/projekt-diplom-arbeit/navigation-track/doc/ speichern
23:14:12 23:18:58 Anzeigen projectThesis.shtml #tablesIndex
28-01-2002 (Montag) 11:19:17 11:19:31 _top Tracking the Navigation Behavior of Web Anzeigen
P R L back followed Link Communities (Toyoda) Als
11:35:5212:35:06 Anzeigen B http://www.pms.informatik.uni-muenchen.de/ Bookmark B
Bei der Benutzung von teami=web werden Daten aufgezeichnet. Bei Prablemen bitte 1

Figure 4.2: Screenshot of the teamXweb Session History

Whenever the community-combobox is being changed, the person-combobox is set to
the first entry. Whenever the person-combobox is changed (i.e., also when the user
has changed the community-combobox), the table with the user sessions is updated to
the current selection. The table with the user sessions is displayed in the bottom-left
frame. The first entry is the "current session", if available in the current
community/person-selection. The following entries are a list of all sessions, in reverse
order (last session first), with start-time and end-time and a link that shows the
contents of the UserSession in the bottom-right frame. Whenever a user session is
selected, both the list of user-sessions and the contents of the currently selected user
session are reloaded. The list of user-sessions (an HTML-table) has the currently
selected user-session highlighted. The highlighting and accessing of user-sessions
works with the indices of the user-sessions. Care must be taken with lists of user-
sessions of communities, which are generated by accumulating all the community’s

Towards an Integrated Approach to Collaborative Web Usage 55

user’s lists (Community requires a method getUserSessions()).

The selected user session is displayed in the bottom-right frame. On top, the start- and
end-time is given, if available. The rest of the page is a reverse-order list of the states
in the user session. In the first version, the states are represented simply by the URlIs
and titles of the pages, plus the time of visit. In a later version, additional information
can be made available (e.g., framesets with names, open windows etc.) When a state
of a session is selected, that state is restored in the content frame of the window from
which the history has been opened.

4.3 Bookmarks

This section describes the bookmarks in teamXweb and there are two important
relations to mention between bookmarks and the session history: first, user sessions
are obviously captured passively while the user browses, unlike bookmarks which must
explicitely be set by the user. Second, bookmarks are also browsing states. This latter
relation is important because it justifies that the Browsing States of the session history
need not be editable in any way, as this can be done by adding them as bookmarks
and then editing the bookmark.

s teamXweb ALPHA 5 (History)

david (aktueller Benutzer) -

Java-API (3)

Figure 4.3: Screenshot of the teamXweb Bookmarks

This implies that bookmarks can not only be set from the current page, as in most
browsers, but also from the session history view. While browsing the session history,
users may find certain entries especially interesting and put those entries to the
bookmarks. Or he may feel the need to extract a certain Browser State from the
session to add additional information - which is only possible with bookmarks.

Which is the major difference between a bookmark and a Browser State: bookmarks
are editable. Just like user sessions, bookmarks can have names, descriptions further
attributes, like keywords and be put into a hierarchy of categories. Thus, while
bookmarks point to the same information in the Web as Browser States, they are more
closely related to user sessions in terms of how the user can archive them. Bookmarks

Towards an Integrated Approach to Collaborative Web Usage 56

are the smallest editable piece of information in the bookmarks section and user
sessions are the smallest editable piece of information in the session history.

Finally, as bookmarks are equivalent to browsing states, they can also capture different
states of the same frameset. This distinguishes the bookmarks of teamXweb
significantly from the bookmarks in most Web browsers, as they usually only store the
starting page as bookmark. This feature is particularly useful with documentations like
the Java APl which rely on a frameset for comfortable navigation.

The user interface for bookmarks is quite similar to the user interface for the history,
as figure 4.3 illustrates. Notice that states of framesets can also be stored as
bookmarks (java.awt.Applet in the Java APl in the given example). While in the
history screenshot (figure 4.2), a community had been selected (TG Betatester) and
the history of all its members was shown (Alle Mitglieder), in the bookmarks
screenshot the scope was set to the current user: david (aktueller Benutzer).

4.4 Communication

While sharing bookmarks and history are key components to a system that shall
support collaborative Web usage, they need to be complemented by support of the
most important aspect of collaboration: communication. One objective of the project is
to create a well-integrated platform for collaborative Web usage, and thus the system
also provides communication features.

As discussed in chapter 2.4, there are two dimensions of communication in the context
of teamXweb: asynchronous vs. synchronous communication, and the target of
communication. While synchronous communication (e.g., chat) is a very interesting
feature when the system is used heavily and frequently by a large user base,
synchronous communication is beyond the scope of the present work. Thus, only
asynchronous communication is implemented.

Users can send other users private notes, similar to eMail. The advantage of providing
an alternative to eMail is mainly that the whole system is more integrated that way.
However, in the long run it makes sense to integrate teamXweb’s messaging system
with eMail so that users can choose which system to use without a break in the user
interface.

Communities are another target of communication, which makes communities a sort of
message-board at the same time. The same discussion as before with eMail applies
here with the relevant well-established communication services for communities:
mailing-lists and newsgroups. However, the tight integration into teamXweb is even
more important here than in user to user communication, and the integration of
community communication justifies the integration of user to user communication even
more.

A long-term goal may be providing a proprietary interface to these services that is
well-integrated into teamXweb, but using the open, well-known and well-accepted
standards below the surface.

Last but most important, notes can be left on Web sites and pages. This way, pages
can be annotated and at the same time, a discussion about the content of the page can
be held. When a user leaves a note on a Web site or page, he can choose to whom this
note is visible: either it is a private note that only the user can see, or the note is

Towards an Integrated Approach to Collaborative Web Usage 57

visible to one of the communities he is a member of, or it is a public note that is visible
to all users of the system.

A major achievement of teamXweb concerning integration is illustrated by figure 4.4.
This is the central overview of everything that has to do with communication. With this
overview, the user can find out about messages he has sent or received as well as the
communication within communities. Finally, even the annotations made on Web sites
or Web pages are available in this view.

While the natural places to find out about these latter forms of communication are the
communities respectively Web sites or Web pages where the communication took
place, this gives a quick overview. A user no longer has to browse to a specific Web
page to find out there are no new messages. Instead, he can see all Web sites and
pages with new messages (or: with any messages at all) in a quick overview.

teamXweb ALPHA 5 (Communicator) !Em
B

[Carmmunity-Hatizen] [Ce Matizen] [Sei tizen]

Beschreibung (neu / gesamt)

[Eigene Notizen] Dornain-Hotizen] [Seiten

[communky | cneu / gesamn)

IEigene Motizen] [Carnmunity-Notizen

[boman | sicnwartar | (neu / gesam)

[Eigene Motizen] [Cormmunity-Motizen] [Dormain-Motizen

URL der 3eite Sichtbar fir (neu /
gesamt)

Figure 4.4: Screenshot of the teamXweb Communication Overview

The screenshot also illustrates how the scope of communication is handled with
annotations on Web pages and Web sites: only those messages the current user is

Towards an Integrated Approach to Collaborative Web Usage 58

granted access to are displayed, for instance, public notes (6ffentliche Notiz), notes for
a specific community the user is a member of (TG XML[eXtensible Markup Language]-
Praktikum and TG HS i18n and /10n) as well as private notes of that particular user
(private Notiz). If there were more communities / Web sites or pages with messages
and the overview thus would become cluttered, implementing filtering for specific
communications (communities / Web sites / Web pages) or specific scopes (private /
public / specific communities) is straightforward. The user interface for selecting these
parameters can be almost the same as with session history and bookmarks, as
illustrated in figure 4.2 and figure 4.3.

4.5 Statistical Information

The same choice of scope as for communications - private, per community and public -
is also available for the statistical information, which is displayed for each visited page,
in the orientation frame below the actual page (see figure 3.3 (2)). There are several
types of statistical data which will be outlined in this section.

For each page and site, the number of visits is shown as well as the number of visitors.
As mentioned before, this can be referring to the user himself ("how often have | been
on this page before?"), one of his communities or all teamXweb users.

The same applies to the followed links: Whenever a user clicks a link on a page, a
counter is increased and the most popular links are displayed in the statistics. For
many people, however, it may be more interesting to see which links have lead to the
page - and this information is also available. Thus, one can easily follow the most
popular path towards a page backwards. As pointed out in [Gibson1998b], this can
also make finding good hub pages easy.

Towards an Integrated Approach to Collaborative Web Usage 59

4.6 Feature-Matrix

To illustrate how teamXweb integrates collaboration features compared to other
systems, a feature matrix with the most important features has been created. This
matrix includes teamXweb (ALPHA 5) compared to major Web browsers (e.g.
Netscape, Mozilla, Opera, or Internet Explorer) as well as major Web communities
(e.g. Yahoo). The rows of the matrix contain a set of features, and the columns contain
if, or how these features are implemented in the given system. Some features are
considered not applicable to a given type of system, because the system cannot
support these features in principle.

A much more detailed detailed feature-matrix can be found in appendix B. Note
however, that this only includes a comparison of teamXweb with major browsers. Web
communities are not included in that matrix as much of the data does not apply. Even
though teamXweb provides a concept of communities very much like major Web
communities, it is more like a Web browser and therefore can be better compared to
Web browsers than to Web communities.

Features teamXweb Major Browsers Major
Communities
Browsing
Bookmarks ® more detailed ® framesets: only one entry for ® can be shared
® supports framesets many states! ® not integrated
® accessible from ® stored locally = no sharing with browser
anywhere

® shared within
communities

History ® same as bookmarks | ® same as bookmarks ® not applicable
Navigation Support / ® page / site visits ® supported via external services ® not applicable
Web Page Statistics ® current visitors (Mozilla integrates this very well)

® links from document | ® some browsers (e.g. Opera,

® links to document Amaya) can show I|nksfrqm

document in a separate window
Collaboration
Communities ® supported ® not applicable ® central element
Asynchronous ® within communities | ® eMail functionality ® within
Communication ® on Web pages / ® same application, but no communities
sites integration with browsing

® well-integrated

Synchronous ® within communities | ® via external applications, not ® within
Communication? ® on Web pages / tightly integrated communities
sites ® instant messaging

® well-integrated

Annotations ® well-integrated with | ® usually not supported (support ® not applicable
communication only with plugins, native support
in Amaya)

Table 4.6: Feature-Matrix comparing teamXweb, Major Web Browsers and Web Communities

Footnotes:
1 Not implemented in the current version of teamXweb, due to time constraints, but a important element of the
concept.

Towards an Integrated Approach to Collaborative Web Usage

60

Towards an Integrated Approach to Collaborative Web Usage 61

5 Experiment and User Survey

In order to test the acceptance and usage of the system, the prototype described in
chapter 4 has been implemented and a field experiment with various user groups has
been conducted. This section describes the experiment, a follow-up user survey and
the results. Firstly, however, the testbed in which the empirical research has been
conducted is described.

5.1 Testbed

As the system supports collaborative Web usage, groups in which this sort of
collaboration could take place must be motivated to use the system. A few such groups
are introduced as candidates for the field test. There were two periods for testing, one
in the winter term 2001/2002 and another one in the summer term 2002. The
candidate groups for the winter term included the following three courses of the
Department of Computer Science at the University of Munich:

Praktikum "XML and E-Commerce"”
[http://www.pms.informatik.uni-muenchen.de/lehre/praktikum/xml-
ecommerce/01ws02/] is a practical course for approximately 15 graduate students.
The participants are expected to have solid know-how of Web technologies and Web
usage. The tasks involved are expected to require a lot of information searching on the
Web and this work is suggested to be done in teams of 3 or 4 people. From this group,
the highest acceptance is expected and possibly valuable feedback on the system can
obtained by these "power users". While in the other courses, the teams all work on the
same tasks, the teams in this project will work on different tasks. However, it is very
probable that the tasks require gathering similar information. Thus, this community
may provide interesting information on how teams with different aims can loosely
cooperate in information gathering.

As the group is relatively small and a good technical know-how is expected from the
members, it was chosen as the first group for the experiment. |If problems are
encountered at this stage, only few people are involved.

Programmierpraktikum (German)

[http://www.pms.informatik.uni-
muenchen.de/lehre/praktikum/progprakt/01ws02/progprakt.html] is a practical
programming project with approximately 90 participants that have at least a basic
know-how of programming and are expected to have used the Web previously. The
tasks of the course will be accomplished by teams of 5 members and involves research
on several programming issues and working with the Java APls. These Java APIs are
accessible via the Web and are structured in three frames, so this is a typical Use Case
for the features that history and bookmarks work well with framesets. Information
shall be gathered on how teams use the Web for solving their appointments, both with
respect to the resources they use and how they interact while searching for those
resources.

Involving this group is scheduled two weeks after the first group started.

Informatik I (German)

[http://www.dbs.informatik.uni-muenchen.de/Lehre/Infol/] is a lecture for beginners
in computer science with approximately 500 participants. It deals with basic
programming concepts and is focussed on functional programming. As programming

Towards an Integrated Approach to Collaborative Web Usage 62

language for examples and exercises, SML is used. ldeally, a large group can be
motivated to voluntarily use the prototype when working for the lecture. Many
members of that community are expected to start from the course’s homepage which
links to resources on the subjects introduced in the lecture. It shall be quite interesting
to find out which other resources are used by individual students or groups of students.
Possibly, active students annotate the course homepage with links to additional
resources (this should be explicitely motivated).

In this community there may be some people who are relatively new to computing in
general and the World-Wide Web in particular. This may help finding out about the
acceptance of such a system from inexperienced Web Users. Furthermore, by inviting a
large group there is a chance of reducing the problem of a sparse user base which
prohibits some of the more interesting features like site-related chats. Another
interesting aspect of this community is that the system may help learning groups and
other social contacts to emerge.

This group was scheduled to be involved three weeks after the second group started.
However, the amount of people participating from the first two groups was not
sufficient to make predictions on how the system would work in the case of many
people from the last group joining. Therefore, the experiment was not announced to
this group. Instead, a heterogenous group of approximately 30 friends of the author
was invited to try working with the prototype in no formalized setup. This group will be
referenced as others.

As this first phase of the experiment did not provide the expected data due to
moderate participation, a second experiment was scheduled for the summer term
2002. In this second phase of the experiment, the following two courses were
included:

Hauptseminar "i18n and 110n", World Wide Web Internationalization and Localization
(SS 2002)

[http://www.pms.informatik.uni-
muenchen.de/lehre/seminar/internationalisation/02ss/] is a seminar for approximately
15 graduate students. The participants are expected to have basic know-how of Web
technologies. The tasks involved are expected to require a lot of information searching
on the Web, but there are no specific groups. However, the whole seminar can be seen
as a community.

Ethnologie@Internet (German)
[http://www.fak12.uni-muenchen.de/vka/frame.htm?/vka/ethnoweb/ethnoweb.htm] is
a seminar for approximately 15 graduate students of ethnology. The seminar is meant
as an introduction to the Internet, and thus participants are expected to be not too
familiar with Internet technology. The schedule includes group work where participants
are supposed to find out about Web sites about ethnology and rate them. This task is
supposed to be accomplished under supervision in the University of Munich’s main
computer pool.

Towards an Integrated Approach to Collaborative Web Usage 63

5.2 Experiment
The experiment was meant to provide information about three variables:

e Acceptance in the Community
e Reliability of the Prototype
e Structure of the Visited Web

For each group, there was a presentation of the system and participants were invited
via eMail to use the system. As there was practically no significant participation in the
first phase (even after a few reminders via the courses’ mailing lists), in the second
phase volunteers had to explicitely write their eMail-adresses on a list to indicate they
were interested in participating in the experiment. This was done to bind the
volunteers more formally to the experiment and assure they can be contacted for
clarifications.

From the first group (Praktikum "XML and E-Commerce"), of about 12 people who
participated in the course, two logged in to the system. One of them had two sessions,
the other had 20 sessions. As expected, this group had the power users providing
valuable informal feedback and expressed enthusiasm about the system in personal
communications - unfortunately, this applied only to one single person.

Three participants of the second group (Programmierpraktikum) signed on to the
system, and they all signed on only once. The group had about 90 participants.

Finally, in the second phase, the more formal mode of participation in the experiment
showed some effect: five people signed in from each of the courses. Thus, during the
second phase ten more people have used the prototype. However, only one person had
four sessions, another had three sessions and the others only one or two.

From the group of others who have been invited personally and did not belong to the
formal testbed, one person had 10 sessions and was enthusiastic about the system.
One had 5 sessions and at least found the system interesting and usable.

From these results it becomes obvious that no reliable data could be obtained from the
experiment. In particular, there was no instance of collaborative usage, which would
have been the most interesting kind of usage in the experiment. These results may
indicate that the acceptance for a system like this is very low, but other explanations
are possible.

To find out more about the acceptance and possible reasons why there were only three
people using the system actively, it was then decided to move on to a survey which is
discussed in chapter 5.3. However, some interesting anecdotal results from the
experiment shall be reported here:

During the sessions at Ethnologie@Internet, there was the opportunity to observe
some of the participants while they used teamXweb for the first time. While one person
could easily use the system and later provide detailed feedback about useful
improvements, two other persons were obviously overcharged with handling the
system both conceptually ("what is this good for?") and practically ("how can | use
this?"). This may indicate that the system was not intuitive enough for many of the
people who tried working with it. Possibly, this is an explanation why even those who
signed on to the system, often did not log on more often.

Towards an Integrated Approach to Collaborative Web Usage 64

As expected in chapter 3.3, there were some limitations with displaying certain content
of the Web. Even though this issue has been pointed out in all the presentations and all
written introductions to the systems, some users were very frustrated when trying to
work with commercial pages using Macromedia Flash extensively, or search engines
using a lot of JavaScript for central navigation features. It may be interesting to
conduct further experiments with a system that does not have this limitation.

5.3 User Survey

One hypothesis explaining the low participation in the experiment is that many people
did not have enough time to get involved in learning to work with a new and innovative
system. All of the participants are students who have to spend extra time learning the
system and using it for their academic tasks, and some informally mentioned too little
time as reason for not even trying out the prototype in personal communications.

Another potential hindrance for people may be concerns about their privacy. As the
system stores Web usage data on a central server, privacy is indeed not particularly
secured. Furthermore, the system uses cookies and JavaScript, which have a
reputation of posing serious security risks to users that enable them. This has also
been mentioned as a reason for not participating in personal communications.

To test these hypothesis and gather further information on how people perceived the
system, a questionnaire has been assembled and all the people involved in the two
phases of the experiment have been invited to fill out that questionnaire. The
questionnaire was implemented as a simple Web form and composed of only ten
questions that could be answered in less than 10 minutes. This was done in the
assumption that time was a reason for people not to participate and the invitation
included a remark that answering the questionnaire would not be a time-consuming
task.

This lightweight nature of the user survey proved itself with significant participation. Of
exactly 150 people that were asked to participate in the survey, 38 filled out the
questionnaire. One questionnaire has been returned blank, which may have been a
technical accident and thus is ignored. Overall participation amounts to 25.3% which
can be considered pretty good. For the full results of the user survey, see appendix
C.3.

Not very surprisingly, most participants are studying computer science (29, which
makes 76.3%). Other majors were hardly represented at all, as table 5.3 (1) shows.

Group # Replies Quota
Computer Science 29 76.32%
Ethnology 2 5.26%
Anglistics 1 2.63%
Computer Linguistics 1 2.63%
Science of Politics 1 2.63%
Psycho Linguistics 1 2.63%

Table 5.3 (1): Majors of the Students Participating in the User Survey

The participation relative to the various groups is reproduced in table 5.3 (2). Three

Towards an Integrated Approach to Collaborative Web Usage 65

people have not answered the question which group they belonged to, which is why
there are only 35 people by groups while 38 people answered altogether. Participation
is distributed relatively evenly over the different groups, with better participation in
Ethnologie@Internet. All values must be seen with precaution as the number of
participants in each group is rather small and thus very error prone.

Group # Members # Replies Quota
Praktikum "XML and E-Commerce" 12 3 25%
Programmierpraktikum 90 18 20%
Ethnologie@Internet 14 5 36%
Hauptseminar "i18n and 110n" 5 1 20%
Others 29 8 28%
Overall 150 38 (35) 25%

Table 5.3 (2): Participation in the User Survey

15 (39.5% of 38) participants said that they have created an account, only one person
(2.6%) has only tried the guest account (however, others may have first used the
guest account and later signed on - the statistical data from the experiment indicates
that the guest account was used quite frequently, 63 times overall which includes a
few logons for testing and demonstration purposes). 13 (34.2%) have not yet tried
teamXweb and 8 (21.1%) said they will not try the system. That means that a majority
(21 people, 55.3%) has not ever seen the system except possibly during the
presentations, which is consistent with the results from the experiment. This also
means that only 37 of the 38 participants answered the question on whether they have
used teamXweb.

When asked for the reason why they did not or will not try the system, 6 (28.6% of 21,
15.8% of 38) said they did not see a use in the system. Other reasons (multiple
selections were allowed) were insufficient time, concerns about security and privacy
and general disinterest (3 persons each, 14.3% of 21, 7.9% of 38). Finally, two people
said they simply did not want to join an experiment.

The participants could also write an open answer to the question on why they did not
try teamXweb. Two mentioned security concerns, however, one of them said the main
reason was lack of time. Two participants of the Programmierpraktikum considered the
system not useful for their task. A surprising result as use cases particular to that
course (Java API, see chapter 5.1) have been introduced in the presentation and these
two people answered the question whether they saw the presentation with yes.

The 15 people who did create an account were asked why they did not use the system
more often - only one of them had more than 10 sessions, so 14 people were supposed
to answer the question. Multiple selections were allowed and two answers indicating
that the system was not considered useful (generally and due to the provided
contents) were checked by four people each (29% of 14). Two people said they had
forgotten their username and password (this was mentioned to the author in previous
personal communications and a confirmation eMail was sent to new users with the data
since that).

The questionnaire contained a section where people who tried the system could
evaluate various features of the system. For each feature, the importance and the
quality of the implementation could be evaluated in two separate scales. The scale for

Towards an Integrated Approach to Collaborative Web Usage 66

the quality had six values from very good = 1to insufficient = 6, the scale for the
importance also had six values, ranging from important = 1 to useless = 6. This
scale was compared to the German grade system which also ranges from 1 to 6, where
1 to 4 indicate that a test or course was passed, while 5 and 6 indicate failure.

Importance
Quality
10
8
6
4
2
. 7, < o 4 o) 6.
: G@f) é"@
S

Figure 5.3 (1): User Interface

This question has been answered by 17 people which leads to the conclusion that the
one person that has not answered the first question did in fact use teamXweb. The first
question was generally about the importance and quality of the user interface. As
figure 5.3 (1) shows, the importance was rated very high by most people. One person
found the user interface not very important (5 on the scale). The quality of the user
interface of teamXweb was considered medium, with a tendency to good. The diagram
shows a discrepancy between importance and quality, indicating that the quality of the
user interface still needs improvements.

Importance
Quality
10
8
6
4
: <
f 7 < 3 4 sk 6
s @@f) A"@
S

Figure 5.3 (2): No Installation

One of the most important reasons for chosing the architecture discussed in chapter
3.3 was that no installation is required at the clients. As it turned out in the
experiment, this must be weighed against the display problems with some pages. So
the second part of this question was about the feature of not requiring an installation.
The exact wording was "Dass man es [teamXweb] ohne Installation direkt im Web

Towards an Integrated Approach to Collaborative Web Usage 67

starten kann" (that teamXweb can be started directly in the Web without installation).

As figure 5.3 (2) shows, this has been considered both important and implemented
well by most people. Only two people found this feature comparatively unimportant
(12% of 17). This must be compared with a later question, where four people indicated
that displaying all pages would be a desirable improvement and they would accept
installing a plugin for this (11% of 38). From these results, the architectural decision
taken in chapter 3 seems to have proven useful, but may still have to be extended.

It does not satisfy the needs of all users, but it seems that more people appreciate
needing no installation than people are having trouble with particular pages. The
similarity between importance and quality may be an artefact due to the fact that
importance and quality are dependent in this case: if the feature is considered
important, its existence in a system will probably be considered a "good
implementation”.

The following parts of this question were concerned with the collaboration features of
teamXweb. It must be pointed out that the answers to these questions are of a rather
theoretical nature, as participants could hardly use the system in the intended way.
This is a consequence of the system not being used by enough related people
concurrently to allow collaboration.

Therefore, two features that were not originally intended for the system but "come
with the system for free" were also evaluated: bookmarks and history can be accessed
by the same user whereever he is. Unlike with common browsers, where these data
are stored with the browser installation, teamXweb allows accessing the data anywhere
a user has access to the Internet.

The results are compiled in table 5.3 (3). Generally, bookmarks are considered more
important than history features (figure 5.3 (3) and figure 5.3 (4) vs. figure 5.3 (5) and
figure 5.3 (6)), and accessing history or bookmarks anywhere on the net was
considered more important than sharing them (figure 5.3 (4) and figure 5.3 (6) vs.
figure 5.3 (3) and figure 5.3 (5)). The finding that Web browser’s histories are not
considered a very important feature is consistent with the findings of [Cat/ledge] and
[Tauscher] that were presented in chapter 1.2.1. There should be a correlation
between how often a feature is used (findings of [Catledge] and [Tauscher]) and how
important it is considered (findings from this user survey).

A more interesting finding, however, may be that people seem to be more interested in
features for themselves than in collaboration features. If the data is representative,
this is a possible conclusion from the findings in this survey, and it would be a very
good explanation for the results of the experiment. However, this is just a lightly based
hypothesis and further research is needed to test this.

Another aspect of teamXweb that may have to be improved, according to the results of
the survey, is communication. Most people considered the quality of the
implementation medium on the scale, while importance is considered relatively high
both by the participants of the survey (see figure 5.3 (7)) and in chapter 2.4 and
chapter 4.4. Annotations, on the other hand seem to be accepted consistently in
quality and importance as figure 5.3 (8) illustrates.

Towards an Integrated Approach to Collaborative Web Usage 68

Importance Importance
Quality Quality
10 10
8 8
6 6
4 4
2 2
g 7z o @) & g 7z o @) &
t4 g g t4
% 3 & 3
S B Re o2
Figure 5.3 (3): Share Bookmarks Figure 5.3 (4): Access Bookmarks Anywhere
Importance Importance
Quality Quality
10 10
8 8
6 6
4 4
2 2
4 7z o @) & g 7z o @) &
t4 g g t4
) g & 4
S B Re o2
Figure 5.3 (5): Share History Figure 5.3 (6): Access History Anywhere
Importance Importance
Quality Quality
10 10
8 8
6 6
4 4
2 2
g 7z o @) & g 7z o @) &
14 : . 14
) g & 4
S B Re o2
Figure 5.3 (7): Communication within Communities Figure 5.3 (8): Annotations

Table 5.3 (3): Evaluation of Collaboration Features

Finally, four questions were asked directly to find out how to motivate people to use
the system and what could be improved. For each area, there was a questions where
participants had to select from a set of given answers and an open version of the
question. The two most important ways of motivating people had to do with other
people: 15 people indicated that friends recommending the system to them would be a
good motivation, 13 said more people were already using the system would motivate
them (39% respectively 34% of 38 participants; multiple selections were allowed, see
also table 5.3 (4)). Therefore, if a core set of early adopters can be motivated to use
the system, it is very probable that others will follow.

Towards an Integrated Approach to Collaborative Web Usage 69

Seven participants said that a private server not accessible by people who do not
belong to the relevant community would be a motivation (18% of 38). This indicates
that a well-secured peer-to-peer architecture outlined in chapter 3.1.3 may improve
usage of the system. Possibly, while it may not be feasible to install this system on a
global basis, targetting the system at small installations with a few users may prove
successful. In that case, a single, secured server located at the institution where
members access the Internet may be sufficient and no peer to peer services required.

Answer # Replies Quota
Nothing 1 2.6%
More, better Features 6 15.8%
More People using it already 13 34.2%
Friends that use and Recommend it 15 39.5%
Getting Money for Using it 4 10.5%
Paying Money for Using it 0 0.0%
Private Server for my Community 7 18.4%

Table 5.3 (4): Motivations to Use the System more often

It seems that there is no pressing need to add new features to the system: only six
people said this could motivate them to use the system at all or more often (16% of
38), and the question concerning new features had a moderate rate of answers. The
maximum was seven people (18%) asking for the possibility to send information into
the system via standard eMail. Instead of considering this a new feature, it should be
seen as a request for better integration with existing standards, a finding that is
consistent with many of the answers to the open questions, for instance:

e "Bookmarks mdchte ich am liebsten im-/exportieren kénnen [...] um mit meinen
bestehenden Bookmarks gleich losarbeiten zu kénnen (evtl. Formatstandards wie
XBEL, Netscape-format?)" (A request for the possibility to import and export
bookmarks so that existing bookmarks can be used, pointer to formats for this:
XBEL and the format used by Netscape). [From an answer to question 8].

e "zb ein (httpS)-webinterface fuer pop/imap (evtl. mit ssl) mailaccount [...]" (A
request for an interface to standard eMail). [From an answer to question 10].

e "Die Gruppe kommunizierte [...] Uber Mailinglist. So lange der Umgang mit dem
TeamxWeb Tool nicht selbstverstandlich ist, sollte man sich Uberlegen, die
Kommunikation automatisch an die Mailingliste zu spiegeln, um auch technisch
abgeneigte Mitglieder miteinzubeziehen und um nicht zwei verschiedene
Plattformen bei der gemeinsamen Kommunikation zu haben." (Statement that the
group involved in the experiment used a mailing-list for communication and that
the communities' communication of teamXweb needs to be forwarded to the
mailing-list respectively the communication of the mailing-list needs to be
forwarded to the teamXweb community, in order to avoid diverse communication
platforms). [From an answer to question 10].

Towards an Integrated Approach to Collaborative Web Usage

70

Towards an Integrated Approach to Collaborative Web Usage 71

6 Discussion

The theoretical backgrounds for an integrated approach to collaborative Web usage
have been established. Both the terminology has been clarified and a variety of
existing approaches in various disciplines has been surveyed and their relevance
disussed. On that basis, concepts relevant to such an integrated approach have been
introduced: collaboration, communities, Web navigation, communication,
categorization and privacy and security issues.

An integrated approach to collaborative Web usage can be implemented with many
different architectures that were introduced and discussed. In particular, some of these
architectures can be combined and the advantages of such combinations have been
outlined. As existing architectures did not meet the needs for the system, an approach
that was termed meta-browser has been selected and explained in detail.

With the given architecture and time constraints, a set of features for a prototype is
possible. This set of features was discussed and finally compared to the feature-set of
commonly used Web browsers.

The prototype - called teamXweb - was implemented and tested with an experiment.
As the experiment did not provide data with the expected density, it has been
complemented with a user survey. The major limitation of the experiment was that no
instance of actual collaboration took place, which also limits the reliability of some of
the survey’s results. Furthermore, more than half of the people who answered the
questionnaire did not actually use the system at all.

A system like teamXweb does not only have some inherent complexity but also
confronts people with a new approach to using the Web. Aside of the effort to learn
using such a new system efficiently, this requires from the potential users a shift in the
way they think about the Web and how it is used. While very few early-adopters seem
to be capable of performing this shift in thinking, most people will probably start using
the system only after some others already use the system and recommend it to them,
a typical "chicken-egg" problem

While the core features and concepts of teamXweb have proven themselves a good
basis, some improvements to teamXweb facilitating this process include:

e A more intuitive and easy to understand user-interface. In particular, as
much complexity as possible must be hidden from the inexperienced user while
allowing experienced users to access the whole potential of the system. One area
that may need specific attention is communication.

e Avoid storing data that may raise privacy concerns. As history doesn’t seem
to be important to most people, removing the automatic capturing of history data
may be a significant step towards that end. Instead, users may be given the
possibility to record certain sessions they consider useful for later retrieval.
Another approach is having local, distributed servers for teamXweb that only
store the data relevant to their users and that are only accessible by those users,
for example a dedicated server for an institution or project that only hosts
relevant users and communities.

e Adapt architecture to user's needs. The architecture with the client
implemented as a meta-browser Web application has proven helpful for many
users and many situations. In particular, the possibility to access the system’s
data anywhere, without the need of installing any additional software has been

Towards an Integrated Approach to Collaborative Web Usage 72

appreciated. However, the problems with certain pages and the Ilimited
possibilities concerning the user interface establish the need for another solution.
Ideally, the lightweight interface shall be kept, but complemented by a richer
interface that may be an add-on to existing Web browsers. The Mozilla browser
may provide a very useful framework for this with the XML User-Interface
Language (XUL[XML User-interface Language]). The idea behind XUL is creating
user interfaces with XML, and the user interface of Mozilla is already implemented
that way. Thus, teamXweb could be integrated smoothly into the browser. For an
introduction to XUL, see [Deakin].
o Integrate the system with existing standards. This way, the threshold for

moving to the new system can be significantly reduced. In detail, this means:

o Import and export of bookmark collections.

o Integration of standardized communication:

m Mailing-List functionality for Communities (i.e., a bridge between
teamXweb and standard eMail, allowing users to participate in
discussions via standard eMail).

m Bridge to existing annotations systems (e.g., Annotea).

m Integration with existing Instant Messengers and IRC[Internet Relay
Chat].

Summing it up, there is significant need for further work in the areas of theoretical
backgrounds (in particular, modelling Web navigation), implementation as well as
gathering empirical data on the acceptance and usability of such an evolving system. It
seems that the direction set in the present work is promising, but further steps are
needed for realizing the goal of an integrated approach to collaborative Web usage.

Towards an Integrated Approach to Collaborative Web Usage 73

Appendix A: System Implementation
Documentation

In this appendix, a brief overview of the implementation of teamXweb is given. Instead
of going through the whole system on all abstraction levels, only aspects that are
considered particularly interesting are selected. The appendix starts with a very
abstract description of the system from the user’s perspective. After that, the
technologies used for the implementation are discussed. Then, an overview of the user
interface of teamXweb is given. Finally, the processing of Web pages during a user’s
navigation through the Web is described in some detail, reaching to the level of source-
code snippets.

For a discussion of the chosen architecture, see chapter 3.3. As in chapter 3, the UML
is used for illustrating the design with diagrams.

As tool for analysis, design and implementing teamXweb, the IDE[Integrated
Development Environment]Together Control Center has been used. Together provides
modelling with the diagrams defined by the UML and several additional proprietary
diagrams. Furthermore, it provides a convenient sourcecode editor. The most
important feature, however, is the so-called simultanuous round-trip engineering:
whenever changes are applied to class diagrams, the source code is automatically
updated - and if the source code is changed, all related class diagrams are updated.
That way, it is very easy to switch between design and implementation phases,
allowing quick iterations. Finally, an academic license for Together could be obtained
for free by [Togethersoft].

Towards an Integrated Approach to Collaborative Web Usage 74

Appendix A.1: The User's Perspective

For a very abstract view of the system from the user’s perspective, see the Use Case
diagram in figure A.1 (1). The Use Cases are partitioned into five areas of functionality:

e User Management

Common Browser Functionality

History (includes Bookmark functionalities)
Communities

Communication

The Use Cases concerning communities and communication are exclusively
collaborative, while history includes non-collaborative Use Cases that are extended by
collaborative Use Cases. User management is not collaborative in itself but is required
for collaborative Use Cases.

User Management Common Browser Functicnality
Register with System e
Follow Hyperlink ——— Open Hyperlink in New Window
(. Change Profile 3

‘ Login to System

|

Browse the Web Enter URL Manually
1 e)\~ S

~ ——
i b =3
= o Ty N
History - ~ — Communication
~ S
User Use History Use a Bookmark S D =
-~
= Chat with Users on Same Page

Authentificated User [SSextend=> | e

<<extend>> '.
Use Peer's History Leave Annatation on Document
‘ Use Peer's Bookmarks \/
/ = Communicate with Others Chat with Other Users
e f_i__,/f/_i ‘
P ol

"
< Collaborate with Others 5=+
Send Note to Other User(s)

Send Note to Community
Communities Chat with Users of Same Community
Manage Communities Join/Leave Community

Medify Community Permissons

Create/Modify/Delete Community

Green Use Cases are White Use Cases are slill
implemented in the current to be implemented

system

Figure A.1 (1): Uses Cases for the teamXweb System

There are two types of actors: users and authentificated users. The only functionality a
user has access to is registering with the system or logging in to the system. During
registration, the user chooses a unique user name and password that he can later use
for logging in. After logging in, a user becomes an authentificated user and can thus all
of the functionality available to authentificated users. However, a guest account has
been added which allows users acting like authentificated users without having to
register or login. There is only one guest account, however, so that all users logging in
as guests share the same data.

Use Cases concerning synchronous communication are drawn with white background
because they are not implemented in the current system. All other Use Cases are
drawn with a green background to indicate that these Use Cases have been
implemented successfully.

The process of registering with and logging in to the system is also illustrated with the

Towards an Integrated Approach to Collaborative Web Usage 75

Activity Diagram in figure A.1 (2). It starts with an HTML-form being shown to the
user. If the user is new, he can register by filling out a section for new users within
that form, that requires entering a new username and a password that must be
entered twice to avoid typing errors that would result in the inability to login at later
times. If the username is not unique (i.e., another user already has used that name) or
the passwords mismatch, the user is informed with an error message and must try it
again. Otherwise, he enters the system.

If the user has previously registered with the system, he is known to the system and
should know his username and password that he can enter in another section of the
login page. If the login data is correct, he enters the system. Otherwise he is given an
error message and must try again. If he fails for three attempts, his session ends. The
user interface elements involved in this process are explained in appendix A.3.

(_ Show Login HTML-Page)

[user is new] Wiwnl

Register: Enter Desired User Login: Enter User Name and
Name and Password (twice) Password
¢: [login incorrect, less than 3 times]
[user name exists or password
mismatch] [user name is new] [login correct]
Show Welcome Screen with [login incorrect, 3rd time]
System Explanation and Statistics

Open Startup-Screen with
Meta-Browser

Figure A.1 (2): Activities for Registering with or Logging in to the System

Appendix A.2: Technologies Used for Implementing
the System

This section gives a brief overview of the technologies used for implementing
teamXweb. These technologies are only explained insofar it is needed to explain the
choice of the given technology. For more detailed information, see the relevant
specifications and Web sites.

As implementation language for the server, Java has been chosen. The major reason
for this is that Java is not only a programming language, but a development platform
with a large set of well-documented and consistent APIs that is used widely in the Web
environment. At the time when the implementation was started, the Java™ 2 Standard

Towards an Integrated Approach to Collaborative Web Usage 76

Edition, Version 1.3.1 (J2SE™)[J2SE13] was the most current stable version of this
development platform. Even though first preview releases of Java™ 2 Standard Edition,
Version 1.4 (J2SE™)[J2SE14] were already available and used in early versions of the
prototype, these had significant incompatibilities with other components that were
used (Tomcat in particular) and thus later versions of the prototype have been
implemented with the earlier version of Java (1.3.1).

This was not an easy decision because the incompatibilities being fixed was just a
guestion of time and there are significant improvements in J2SE 1.4 that would have
simplified development:

e Java Secure Socket Extension (JSSE) has been integrated
e a set of APIs for processing XML has been added
e an API for regular expressions has been added

These technologies had to be added externally when the older version of the Java
Platform replaced the more recent one.

In J2SE 1.3, there is no native support for SSL[Secure Socket Layer]. Therefore, no
Web content delivered via a secure HTTP connection (protocol HTTPS) could be viewed
with teamXweb. In order to ensure secure content can also be delivered, Java™ Secure
Socket Extension (JSSE) is added. See [JSSE] for details on this technology.

XML is used for making various data in teamXweb persistent. XML is very suitable for
this task because the data to be persisted is highly structured: users that belong to
communities, Web pages that belong to Web sites, bookmarks and history. The only
realistic alternative to using XML for this would be using an object oriented database.
In fact, an object oriented database would have the advantage that no XML to Java-
objects mapping is required. That way, persistence would have been less error prone
and the implementation may have been easier. On the other hand, XML is human
readable and can be processed in many ways (e.g., via XSL). Furthermore, most object
oriented database systems are commercial and therefore could not be used for this
project.

For parsing and serializing XML, the Java XML parser [Crimson] was used. It is a small
and simple XML parser for Java that is also used as the default parser for JAXP (see
also [JAXP]). The XML data was accessed and processed by the application via [JDOM].
While [DOM] is a widely accepted standard for accessing and processing XML data from
various programming languages, it is cumbersome to use from Java. [JDOM] is much
more oriented on features specific to the Java Platform (e.g., Collections) and therefore
integrates much better in a Java application.

In early versions of the prototype, regular expressions were used to replace the
original URIs in hyperlinks of the documents (for details why this is needed and what
exactly is done, see chapter 3.3 and appendix A.4). Furthermore, String replacement is
needed to fill data into templates and replace < and > with &1t; and >. As J2SE 1.3
does not support regular expressions natively, an external APl was needed. Jakarta
ORO ([JakartaORO]) was used because it was simple and easy to learn in replacement
of the regular expression support in J2SE 1.4.

In later versions of teamXweb, the processing of Web pages was done with [JTidy].
[JTidy] generates a DOM[Document Object Model]-tree for any HTML document, even
if it is dirty HTML not consistent with the standards. While the previous approach using
regular expressions to find instances of and replacing the uri-part

Towards an Integrated Approach to Collaborative Web Usage 77

thereof worked in many cases, it failed when pages were too dirty. Furthermore,
during the implementation and testing, many additional cases were discovered that
needed processing - and writing regular expressions for each of these cases would
have been cumbersome and significantly time consuming. Processing the documents
via the DOM abstraction was a much more elegant and safe approach: instead of going
through the document on the text-level, one can simply look for elements with a
certain name (e.g., <a>) and replace the contents of specific attributes (e.g., href).

As discussed in chapter 3.3, large parts of the user interface of teamXweb are
implemented using HTML with some added JavaScript functionality. The major
advantage of this approach is that no client installation is required and it works with
any graphical Web browser. While in early versions of teamXweb, even the navigation
frame was done with HTML, the functionality accessible via hyperlinks that launched
JavaScript methods, a much better look has been achieved by using a Flash movie that
was designed by Kernzeit GmbH. The HTML navigation bar is still accessible for
compatibility, but the Flash format has been used because it is the de-facto standard
for animated vector graphics and available in most browser installations. The buttons
in the Flash movie invoke the same JavaScript functions that were previously invoked
by hyperlinks. The functionality and a few visual improvements to the navigation Flash
movie have been added by the author of the present work. For the communication
between the Flash movie running in the Flash plugin and the Web page, LiveConnect is
used, which is available in most current browsers. For details on LiveConnect, see
[Hogue].

The HTML pages making up the user interface are generated dynamically with
JavaServer Pages™ (JSPs). An early approach in the prototype was using servlets (see
below) and templates with placeholders that were dynamically replaced with the data
to be shown at the client. This turned out very cumbersome to say the least. Java
Servlets are used successfully for the controller part of the user interface, accepting
HTTP requests and converting them to object oriented method calls to the relevant
helper classes (subclasses of ServletSupport) as illustrated in figure A.3.3 and figure
A.4 (3). The view, however, consists mostly of template HTML and JavaScript code in
which certain fragments are dynamically created. This is exactly what JSPs were
invented for: general (X)HTML pages can be enhanced with so-called scriptlets and
special JSP-tags that are executed on the server to generate the desired output. See
appendix A.3 for an overview of how the user interface has been implemented in
teamXweb. For more detailed information on Java Servlets and JSPs, see the relevant
specifications [JavaServiet] and [JSP] or the home page of Java Servlets and
JavaServer Pages at [JavaServietiISPWeb].

Servlets and JSPs require a so-called servlet container that provides the environment
the Servlets and JSPs run in. For example, listening on a port for HTTP-requests and
converting them to Java objects is done by the servlet container as well as compiling
JSPs into Servlets and those Servlets into Java byte code. As servlet container, Apache
Tomcat 4.0 ([Tomcat]) has been chosen, as it is a non-commercial implementation of
the specifications and is also used in the official Reference Implementation endorsed by
the authors of the specifications (Sun Microsystems).

After some users complained that they had forgotten their login data (see chapter 5.3),
a functionality has been added to the system that an eMail is automatically sent to the
users when they register with the system. Furthermore, users that still know their login
name and have added their eMail address to their profile can make the system send
them an eMail with their complete login data at any time. For sending these eMails, the
JavaMail API ([JavaMail]) has been used as it provides a very easy to user interface to

Towards an Integrated Approach to Collaborative Web Usage 78

eMail functionality. In future versions of teamXweb, the JavaMail API could also be
used to create a bridge between the proprietary communication system within
teamXweb and standards based eMail communication.

Finally, both for debugging and logging of normal operation, [Log4J] is used. This
provides a convenient and highly configurable system for debug messages as well as
system messages. The logging can be directed to different files depending on the origin
of the log message, so that for example messages concerning user management are
written to another file than messages concerning browsing behavior. While logging
functionality is an integral part of the J2SE 1.4, Log4J also works with J2SE 1.3.

Appendix A.3: User Interface of the System

This section gives an overview of how the user interface of teamXweb has been
implemented. It refers to screenshots in chapter 3.3 and chapter 4. For illustrations, in
addition to standard UML diagrams, also so-called Web Application Diagrams are used.
These are used because the UML does not provide a good way for giving an overview
of a set of JSPs that make up the user interface of a Web application. This type of
diagram is provided by Together 5.5, the IDE used for developing teamXweb. While
this type of diagram has some limitation as provided by Together (e.g., only one type
of relationship between JSPs can be expressed), using it is preferred over creating an
own type of diagram because this would have required additional tools which could not
be easily integrated into the development process.

The Web Application Diagram uses rectangles with the text Jsp and the name of the
JSP below that text for representing JSPs. Notes can be added to the diagram in the
way notes are added to common UML diagrams. There is only one type of relationship
between two JSPs that can be expressed, which is used for "consists of (either
frameset or inclusion)", "replaces" and "opens (in a new window)". This relationship is
visualized with a line between two rectangles and even though the relationship is
always directed, this is not visualized in the diagrams (which is considered a major
limitation). Notice that not all relationships between JSPs are covered in the diagrams
used in this section, to avoid cluttering the diagrams with lines. Colors have been used
to make the diagram more expressive. See the notes in figure A.3.2 (1) for details on
how this is used, and also as an example of a Web Application Diagram.

The user interface of teamXweb has been implemented loosely based on the MVC
[Model-View-Controller] design pattern. While the pattern itself is not covered in this
section (see [Burbeck] for an introduction), and teamXweb does not implement the
pattern consistently, the usage of different technologies for view and controller is
characteristic for the usage of this pattern in the Web environment: JSPs are used to
implement the view and Servlets are used to implement the controller. The model is
implemented separetely with a set of plain Java classes. Furthermore, in the controller
part of the MVC pattern, teamXweb uses an own approach to ensure reusability of the
application logic.

Appendix A.3.1: Model

The model of teamXweb includes classes representing browser components (e.g., a
browser window), Web abstractions (e.g., Web site, Web page, link) and
communication artefacts (e.g., Note) as well as users and communities. An abstract
overview of the classes modelling the core system of teamXweb is shown in the Class
Diagram in figure A.3.1 (1). KnownWeb is a class implementing the Singleton pattern,

Towards an Integrated Approach to Collaborative Web Usage 79

that provides access to all Web sites that have been previously visited with teamXweb.
Via those Web sites, all Web pages can be reached.

Senializable ? is member of . Serializable
fi el i rd
o ﬁfo.ef.iqa il owned by 7 NoteBoard
PermissionControiled communities Community
User »
" consists of
old members
e 7
Mmembers current visitors 1 current visitors
1 owner
owned by
1.
defines

defines

Cloneable
Senéhzab!e q 1 Serializable D
BrowserWindow BrowserFrame
pare
top frame

child

This is the aclive class which is displays 1 Serializable
accessed by TrackingSupport NoteBoard
1 currentPage 1 WebSite
whenever the user navigales the Web :
S i B __—
erializable —
NoteBoard '/ - sile
Comparable source oteBoard Le—r -
Serializable WebPage cumeﬁ(péé;s resides on
Link targel |+
1
larget Serializable
Links are stored per user. To get an aggregation for — KnownWeb /;—
a particular community, get the members of that ’ ’ N links to per user
. . o f
community and accumulate the links of all its referrer referrer
USErS. =

Link | [Link reverse links to per user L e

Singleton factory

Figure A.3.1 (1): Core Model of teamXweb

While the previous example is just the canonical model and therefore not much
explanation is needed, the classes modelling communication are more technical and
therefore, more interesting. Within teamXweb, there are four classes of objects that
can receive Notes:

User (notes sent to a person)
Community (notes sent to a community)
WebSite (annotations on Web sites)
WebPage (annotations on Web pages)

These classes implement an interface called NoteBoard, that has one single method,
namely getNoteManager (). This is used to get the NoteManager that handles all
functionality concerning notes.

That way, a consistent handling of communication and notes is guaranteed and the
related entities receiving notes are encapsulated from the complexity involved with
communication. For an overview of the architecture explained, see the Class Diagram
in figure A.3.1 (2).

Towards an Integrated Approach to Collaborative Web Usage 80

O :‘j Serializable
NoteManager
Java.lang.Comparable
Z\r\‘ +NoteManager()
+NoteManager(notes Map)
:‘ZI PermissionControiled +NoteManager{noleManagerElem: Elemer
Serializable +getNoteManager|Ds(type: String):Set
Note +getNoteManager(type String.id String):N
+HoXML():Element -
belongs to 1 +setAdress(type: String, id: String):void interface
Note() +ereateNote(): Note NoteSoand.
+Note(noteElem: Element) item parent +deleteNote(note:Note):void
+toXML{):Element +getNote(id String):Note s —————————=
+toXMLRef(): Element +getCommunitiesWithNotes(user:User):Sq provides access to
+addReply(note:Note) void +getNotes(user. User,scope: String date D
+controlPermissions():void 0. manages 1 +getlLastVisit(user:User) Date noteManager:NotelManager
+compareTo(noteOrDate:Object) g i
noteManager Types:Set T g <' A
; e ;
+SentComparator type:String ax P4 7 |
+SubjectComparator I:String o il / |
+AuthorComparator noteCountint e i Vs :
22 Y
~ 4
noteManager NoteManager i S #* delegates ”mf',g L :
0.* A
ID:String delegates notes to last visited = > i |
sent.Date e Prs / = S
o erializable
author-User * wae written by e T delegates notes 1o, 4
subject String 7 weevlienby Sena,?am; 7 “Sgelegates notes to / WebPage fet
: 3)
body:String i .- /’ target
author PermissionControlled =
parent Note User A [Link e
replies:List 0. Serializable Serializable
permissionManager. PermissionM<—— Community WebSite reverse links to per user
I, R

Figure A.3.1 (2): Communication in teamXweb

Appendix A.3.2: View
The view-part of teamXweb basically consists of the following screens:

e Startup-Screen with Login and Registration of new users

e Browser-Window mimics the user interface of a Web browser (see figure 3.3 (2)
for a screenshot)

e Account-Manager is used to edit the user profile, change passwords or delete the
account

e Communities shows all visible communities and is used for joining or leaving
communities as well as adding, removing or changing communities

e Communicator gives an overview of all messages in all areas of the system (see
figure 4.4 for a screenshot)

e Communication shows the messages of a specific section

e History is used both for accessing the history and bookmarks (see figure 4.3 for a
screenshot of how this looks for bookmarks and figure 4.2 for a screenshot of the
history view)

e Note Editor is used for writing new notes

Most of these screens consist of a set of JSPs that are either composed within are
frameset or via inclusion (the JSP specification provides an inclusion mechanism with
the element <jsp:include page="name.jsp" />). Many JSPs are reused for different
screens or different states of the same screen. Furthermore, a screen may have
different JSPs being displayed one after the other.

For example, the startup-screen is the entry point of the application. The JSP Startup
in figure A.3.2 (1) is basically just the page defining a frameset which consists of
CheckBrowser and StatusBar. StatusBar is used in most screens for showing to the
user when an action has been completed successfully or when an action has failed.
CheckBrowser tests whether the browser used supports sessions (i.e., cookies) and
JavaScript. If not, it displays a message to the user explaining how to switch the

Towards an Integrated Approach to Collaborative Web Usage 81

relevant features on in his browser. If the test is passed, CheckBrowser is
automatically replaced with Login.

Login provides a way for the user to select a user interface (with Flash navigation or
just plain HTML navigation, see appendix A.2) - and includes the JSPs Authentificate,
ResendLoginData, AddUser and GuestLogin. This modular design has been chosen
because AddUser, Authentificate and ResendLoginData can be reused when registering
or logging in failed. If, for example, a user tried to register (using the section from
AddUser that allows entering a new username and password) and either the name was
wrong, or the passwords mismatched, Login is replaced with AddUserFailed. This page
shows an error message and includes AddUser so that the user can try registering with
another username (or type the passwords correctly). This process is also illustrated in
figure A.1 (2). When logging in fails (e.g., because the user entered a wrong password
for an existing username), AuthentificationFailed is used, which includes Authentificate,
ResendLoginData and AddUser (in the given order). With ResendLoginData, the user
can enter his username and will be sent an eMail with username and password, as
mentioned before in appendix A.Z2.

If login or registration of a new user was successful, Login, AuthentificationFailed or
AddUserFailed (depending on whether login or registration was successful at the first
attempt or the first attempt failed) is replaced with Welcome. Welcome then uses
JavaScript to open a new window without any browser user interface elements and
shows within that window the JSP Window. After this, the login process is finished and
the system acts like a common browser with added collaboration features.

JSPs are used tc implement e I8P JSPs with white background Fragment JSPs or HTML pages
the view/GUI of the system ResendLoginData }7 are displayed in existing that are used by other JSPs to

framesfwindows build a complete page are
15P marked green ("includes")

LoginDataResent

Pages that are opened in own B
JSP ISP JsP m and/or new windows are
Startup CheckBrowser Login \ marked with light blue
) = JSP

i / AddUserFailed
AddUser Application exception/error Y
Jsp e — message pages are marked

/ AuthentificationFailed

GuestLogin with light red
Authentificate —
J5P —— J5P
Welcome \ 1 Logoff | JSP | ISP
J5P AccountManagement UserProfile
Feedback
J5P J5F e
Privacy BrowserTitle StatsScope
Jsp [JSP Jsp | JSP | | JSP |
StatusBar Window x Navigation Communities | community
JSP

PageStatistics JSP JSP
CommunityOverview AddCommunity

USP
- History | .
See other diagram for A c— JSP JsP
details on these Communicator JoinSecrelCommunily

Figure A.3.2 (1): The JSPs modelling the GUI of teamXweb (Part 1)

The previous example illustrates how JSPs are used to create the user interface of
teamXweb and in particular, how they are used to compose screens either via inclusion
or with framesets. Other complex screens are outlined in the following brief overview:

e (Browser-)Window consists of StatusBar, PageStatistics, Navigation and an
area where the Web content is shown (if a document could not be loaded,

Towards an Integrated Approach to Collaborative Web Usage 82

PagelLoadingException is shown). Navigation provides buttons to open
AccountManagement, Communicator and History (either with session history or
bookmarks). Each of these are opened in new windows, as is illustrated in figure
A.3.2 (1) by the blue background color.

e Communities opens a frameset that consists of CommunityOverview and
Community. The overview is used to select an existing community or replacing
the frame used to display Community with AddCommunity for adding new
communities or JoinSecretCommunity for joining communities not in the public
list of communities. Community can also be used to join or leave the community,
modify permissions for the community or delete the community (see figure A.3.2
(1)).

¢ Communicator is complete in itself. However, it provides links that open
Communication in an own window (see figure A.3.2 (2) for an illustration).

e Communication is a frameset that consists of ScopeSelector (optional),
NoteOverview and Note. ScopeSelector is only visible if the screen refers to
annotations to a Web site or Web page. It is used to select whether private
annotations, annotations of a specific community or public annotations shall be
shown in NoteOverview. NoteOverview shows all notes or annotations of the
given user, community or Web site or page. Note shows the actual note (see
figure A.3.2 (2) for an illustration).

e History is a frameset that always displays CommunitySelector and UserSelector
in the top frame. With the CommunitySelector, the user can choose whether only
his own bookmarks or sessions shall be shown, or that of a community he is a
member of. If he selects a community, he can use UserSelector to choose
whether the bookmarks or history of all members of that community shall be
shown, or only those of a specific member of that community that has given the
permission to view his history or bookmarks. In the lower frames, either
CategoryOverview and Bookmarks are shown (if bookmarks are displayed), or
SessionOverview and UserSession (in case of the history being shown).

JSPs are used to implement JSPs with white background Fragment JSPs or HTML pages N
the view/GUI of the system. are displayed in existing that are used by other JSPs to

J5F framesiwindows build a complete page are
Servlets are used to implement Navigation HELEIEE
the control/logic of the system
(not shown in diagram) Application exception/error Y

T message pages are marked

_ with light red
StatusBar JSP
Communicator Pages that are opened in own B
and/or new windows are
| marked with light blue.
e JsP
CategoryOverview Bookmarks 5P JsP

— Communication ScopeSelector
—— JsP 1 P

CommunitySelector
sy ———— | e |

Jsp JsP JSP,
History JEP —
NoteOverview Note NoteEditor
‘\—i UserSelector R
i | Bl |
e
—L“jgy— 1‘]5?— Depending on the parameters of History, either the Bookmarks or the History is
. _ shown. The frameset consisls of CemmunitySelector and UserSelector and
SessionOverview UserSession

either CategoryOverview and Bookmarks (Bookmarks) or SessionOverview
and UserSession (History)

Figure A.3.2 (2): The JSPs modelling the GUI of teamXweb (Part 2)
Appendix A.3.3: Controller

The controller part of teamXweb has been implemented using Servilets. While in some
cases, JSPs directly call other JSPs on user actions, the general pattern is that
whenever the user invokes a functionality of the system, a Servlet is called that will

Towards an Integrated Approach to Collaborative Web Usage 83

process the user’s request and send the user a JSP as updated view. The reason why
this has not been achieved consistently is limited time. Therefore, the current
implementation of teamXweb only partially implements the MVC pattern.

However, in the parts of teamXweb implementing the controller part of the MVC
pattern, an additional layer of abstraction has been added. Servlets are tied very
closely to the Web environment and HTTP. To encapsulate this technology from the
actual application, each Servlet has a corresponding helper servlet, called
NameSupport. For an illustration of this pattern, see figure A.3.3. NameServlet gets
requests encapsulated in objects from the Servlet container, which in turn gets his
requests from the client via HTTP. NameServlet then determines how the request must
be handled and calls the relevant method in NameSupport. For a more detailed
illustration of TrackingServlet and TrackingSupport, see figure A.4 (3).

By this encapsulation, much of the functionality of teamXweb could easily be integrated
into a custom browser, a plugin or any other architecture that is not in need of
communicating via HTTP. The surrounding application would simply call the methods of
the helper classes, as it is currently done by the Servlets.

HttpServlet HitpServlet HttpServiet
UserManagementServlet TrackingServlet HistoryServlet

dispatcher 1
delegates to

dispatcher
delegates to

1 dispatcher 1
delegates to
logic provider 1

1 logic provider 1 logic provider

| UserManagementSupport TrackingSupport HistorySupport

| CommunicationSupport| ServletSupport CommunitiesSupport

1 logic provider 1 logic provider

delegates to

1 dispatcher

delegates to

1 dispatcher

HttpServlet HttpServiet
CommunicationServlet CommunitiesServlet

Figure A.3.3: Controller Part of the teamXweb User Interface

Appendix A.4: Retrieving and Processing Web Pages

The most important functionality required for the meta-browser architecture outlined in
chapter 3.3 is replacing all links in the viewed documents with links that load the pages
from the system, so that the user stays within the metabrowser. If this fails, the server
no longer gets notifications while the user browses the Web, and Web pages can no
longer be modified in a way that assures the metabrowser remains intact. Therefore,
this functionality has been chosen as an example illustrating how teamXweb was
implemented and how some of the technologies are used on a more detailed, technical
level, including some source code fragments. This section describes the whole process
of loading Web pages with teamXweb, both from the client’s and from the server’s
perspective.

Towards an Integrated Approach to Collaborative Web Usage 84

(Load to Content Frame or Specific Frame?)

[specific] - o
Find Reference to Specific Frame
within JavaScript-DOM

[content] |

(Update Location Field) If a frameset is displayed
in the content frame, the

requested page must be

Load requested page from server | displayed in the correct
and put it into according frame frame!

(Update Title Frame) (Update Statistics Frame)

Figure A.4 (1): Loading a Web Page (Client Perspective)

On the client, if the new page to be displayed is part of a frameset, the relevant frame
must first be found. This is done with JavaScript, looking for the frame in the
document’s (HTML-)DOM. After that or if the page is loaded directly into the content
frame, the location field that shows the URI of the currently viewed document is
updated. Finally, the request is sent to the teamXweb-server. The page the server
returns updates the title frame with the document’s title and the statistics frame with
the statistical data for the currently viewed document (or frameset). As this is done
with further requests to the server, it is done more or less parallel. This whole process
is illustrated with figure A.4 (1).

The following JavaScript method implements the logic on the client and is included by
the server with each document it sends to the client (among other methods).
Hyperlinks in the document on the client call this method when the user uses them and
they have no specified target(-frame). The method used for framesets (and opening
new windows etc.) is much more complex and therefore not useful for this illustration.

/* Loads url to the content frame, with optional additional params.
* Parameters:

* key: the ID of the link (unique within the document)

* url: the URI of the document to be retrieved and processed

* params: any parameters with the URI ('’ ?parl=vall&par2=vall2’-Syntax)
* userAction: what exactly the user has done (e.g. following link,

* using bookmark, using history, opening window)

*

/
function loadURIToContentFrame (key, url, params, userAction) {
// %$placeholder% is replaced by the server before the page is sent to the client
var newlLocation = "tracking?%PAR_ACTION=%ACT_FOLLOW_LINKS"
+ "&%PAR_USER_ACTION%=" + userAction
+ "&SPAR_WINDOWS=%window%"
+ "&%SPAR_LINK_KEY%=" + key
+ "&%PAR_FROM_FRAME%=%fromFrame%"
+ "&%PAR_TARGET_FRAME%=%fromFrame$%"
// add ignored value to avoid browser caching
+ "&ignore=" + Math.round(Math.random()*100000);
// section is the fragment within a page ('http://[...]/fileName#section’)
var section = extractSection (url);
if (section) {
newLocation += "&%PAR_SECTION%=" + section;

Towards an Integrated Approach to Collaborative Web Usage 85

}
if (params) {
newLocation += params;

}
newLocation += "&%PAR_RESOURCE%=" +url; // must always be last for #section to work

// update location field
if (top.TWFrameNavigation.document.FormLocation) { // HTML navigation-UI
top.TWFrameNavigation.document .FormLocation.LocationField.value = url;

}
if (top.TWFrameNavigation.document.flashNav) { // Flash navigation-UI
top.TWFrameNavigation.document.flashNav.Setvariable ("url", url);

}

// request the page from the server (to the Content-Frame)
top.TWFrameContent.location.href = newLocation;

// show the text "Loading Page..." in the title-frame
top.TWFrameTitle.location.href = "tracking/browserTitle.jsp?title=LoadingPage";

When a page has been loaded into the client and is being displayed, the following
JavaScript code is executed (this is done by not encapsulating it within a method):

top.TWFrameTitle.location.href = "tracking/browserTitle. jsp?title=¢TITLES";

top.TWFrameStatsScope.document .FormLinksScope.random.value
= Math.round (Math.random () *100000) ;
top.TWFrameStatsScope.document .FormLinksScope.submit () ;

The first statement loads a JSP to the title frame that displays the title of the displayed
page. $TITLE% is replaced by the server with the title of the document before the

document (including this code) is sent to the client.

To understand the following two statements, one must know that loading the statistical
page is triggered from a form below that statistical page, in which the user can select
the scope for which the statistics shall be applied (only himself, a community or all
users). The first of the two statements sets the value of a hidden input field (random)
in that form (FormLinksScope) to a random value to assure that the browser will not
use its cache. Then, it simply submits the form - and the statistics are reloaded, just as
if the user had selected another scope.

No further parameters are required because the server stores the state, in particular
which document the user is currently viewing. This leads to the discussion what
happens on the server...

The Activity Diagram in figure A.4 (2) illustrates what happens on the server when a
page is retrieved and processed. This will be explained in detail shorty, but first the
Java classes implementing this functionality shall be introduced:

The Class Diagram shown in figure A.4 (3) gives an overview of the classes on the
server involved in retrieving and processing documents from other Web servers. It also
illustrates the pattern encapsulating the functionality from the servlets mentioned in
appendix A.3.

Towards an Integrated Approach to Collaborative Web Usage 86

This can be one of the following options:
- A hyperlink has been followed.

- An URL has been entered manually.

- The back-button has been used.

- A bookmark has been selected.

- An entry from the history has been
selected

(Determine how that Page was Accessed) —

(Check if Page is in Cache)

[yes]

[no]
(Retrieve the Page from the Original Server)

[error during retrieval]

(" Retumn Error Message to Client)

[page loading succeeded]
(Parse Document to generate DOM tree)

(Make URLs Absolute)

(Check the Page defines Frameset)

[no] Rewrite Hyperlink-URLs Contents URL of the
Process <a>-Elements/ — — href-Attribute
[yes] Process <area>-Elements/ are replaced with
javascriptloadPage(URL)

(Rewrite <frame src="xxx">)

(Include javascript to notify client)

(Serialize DOM Tree)

v

/ "
{_ Send Result to Client)

Within this activity, the user action
C Update User Location on Server) — | is also appended to the history.

.

Figure A.4 (2): Loading a Web Page (Server Perspective)

The diagram shows three classes:

e TrackingServlet: Instantiated by the Servlet container. Whenever a HTTP

request from a client is sent to the server, either doGet (...) or doPost (...) are
called (depending on the HTTP request method), with two parameters: the
request encapsulated in an object and an object for sending the result. Within
these methods, TrackingServlet checks what kind of action is requested and
extracts further parameters from the request object. Then the method of
TrackingSupport required for the given action is called with the relevant
parameters.

TrackingSupport: Provides the methods relevant for tracking a user browsing
the Web. requestPage(...) and followLink(...) delegate the work involved
with retrieving and processing a Web page to the PageProcessor.
PageProcessor: Loads pages from their original server and applies all relevant
processing as described below. Furthermore, this class provides caching for Web
pages to avoid the significant processing task. The class provides the actual logic

Towards an Integrated Approach to Collaborative Web Usage 87

for retrieving and processing the documents and its function is explained in detail
in the remainder of this section.

:'] HitpServiet ServletSupport PageProcessor

...servlets. TrackingServiet ...servlets.TrackingSupport
+CACHE TIME long

+PAR ACTION:String 1 delegates ta 1
+PAR_WINDOWY:String e +TrackingSupport - +PageProcessor
+PAR_FROM_FRAME String +openWWindow. void +processPage: WebPage
+PAR_TARGET_FRAME String dispatcher logic provider | +close\Window:void +loadPage Document
+PAR_LINK KEY:String +requestPage:void +makeURLsAbsolute:void
+PAR_RESOURCE String +ollowLink. void +isAbsoluteURL: boolean
+PAR_SECTION: String +handleForms:void
+PAR_KEEP_URL:String +handleFrameSets boclean
+PAR_USER_ACTION:String +handleAnchorElements:void
+ACT OPEN_WINDOW:String +clearCache void
+ACT CLOSE WINDOW:String

+\VAL WINDOW CLOSED:String]
+ACT_REQUEST_PAGE String |
+ACT_FOLLOW _LINK:Strin |
|
|
L

+ACT POST FORM String
+WAL UNKNOWN HOST.String

+VAL NO CONNECTION:String

+VAL FILE_NOT_FOUND.String The Servlet Container calls the Servlet's Felches documents from their servers
+VAL_UNKNOWUN String doGet and doPost methods with the HTTP request and prepares them to be sent to the
and response from the Client encapsulated client This includes rewriting all URLs
+doGetvoid |~ — 7| in objects. The TrackingServlet then analyzes so that when the user clicks on them,
+doPast void the reguest and calls the relevant methods in its the leamXweb server is called instead of
helper, TrackingSupport the original server

Figure A.4 (3): Classes implementing the Proxy and URI-Rewriting Logic

The server must know what kind of navigation event caused loading of the new page
($PAR_ACTIONS% / $PAR_USER_ACTIONS). For this, various methods exist that are called
on the server. This functionality is implemented with methods of class
TrackingServlet that looks similar to the following code fragment (which is a
"polished" version of the original doGet (..) method):

public void doGet (HttpServletRequest request, HttpServletResponse response) {
// get all parameters from the HTTP request encapsulated in the request object

final String action = request.getParameter (PAR_ACTION) ;

final String window = request.getParameter (PAR_WINDOW) ;

final String fromFrame = request.getParameter (PAR_FROM FRAME) ;

final String targetFrame = request.getParameter (PAR TARGET FRAME) ;

final String key = request.getParameter(PAR_LINK KEY);

final String section = request.getParameter(PAR:SECTEON);

final String userAction = request.getParameter (PAR_USER_ACTION) ;

final URI resource = new URI (request.getParameter (PAR RESOURCE)) ;

final boolean keepURI = "true".equals(request.getParametgr(PAR_KEEP_URI));

final boolean closeResponse = "true".equals(request.getParameter(PAR_CLOSE_RESPONSE));

// get the session so that the current user can be obtained

// (this must be done this way due to the statelessness of the HTTP-protocol)
final HttpSession session = request.getSession();

final User user = (User) session.getAttribute (UserManagementServlet.SES_USER);

// prepare the output

// set the MIME type of the resulting Web page
response.setContentType ("text/html");

final PrintWriter toClient = response.getWriter();

// now forward the request in an object oriented manner to TrackingSupport,
// hiding all HTTP-specific stuff
if (action.equals (ACT_OPEN WINDOW)) {

support.openWindow (toClient, user, window, resource,

section, keepURI, userAction) ;

} else if (action.equals(ACT_CLOSE WINDOW)) {

support.closeWindow (toClient, user, window, closeResponse) ;
} else if (action.equals (ACT_REQUEST PAGE)) {

support.requestPage (toClient, user, window, resource,

section, targetFrame, userAction) ;

Towards an Integrated Approach to Collaborative Web Usage 88

} else if (action.equals (ACT_FOLLOW_LINK)) {
support.followLink (toClient, user, window, key, resource,
section, fromFrame, targetFrame, false, userAction);
} else if (action.equals (ACT_POST_FORM)) {
support.followLink (toClient, user, window, key, resource,
section, fromFrame, targetFrame, false, userAction)

}
toClient.close();
response.getWriter () .close();

With the URI that is being requested, the server first checks if that page is cached and
if so, and if the version of the document in the cache is still current, it is directly sent
to the client.

If no current version of the document is available in the cache, the page is retrieved
from the original server. If there is a problem retrieving the page from its original
server, an error message is returned to the client. Otherwise, the document can be
parsed with JTidy and further processing can take place in the DOM tree. This is done
in the following method of class PageProcessor (simplified for illustration purposes:
the original method is more generic):

/**
* Loads and parses url from the original server.
* @param url the location of the document
* @return the document as DOM
*/
public Document loadPage (URI url) throws IOException ({
final InputStream input = url.openStream();
final BufferedInputStream in = new BufferedInputStream(input) ;
final Tidy tidy = new Tidy();
final Document page = tidy.parseDOM(in, null);
return page;

All relative URIs must be made absolute. This is because the page has been loaded
from the teamXweb server, and any relative URIs would thus point to files on
teamXweb that obviously do not exist. As the HTML-DOM tree is used, this is a very
straightforward task as the following code fragment illustrates (code has been
simplified for illustration purposes: the original method is more generic):

/**
* Makes content of the href attribute of the a element absolute.
* @param url the original URI of doc which is used as base for relative URIs
* @param doc the document referred to by url, parsed with JTidy
*/
public void makeURIsAbsolute (URI url, Document doc) {
final NodeList elements = doc.getElementsByTagName ("a");

Element element = null;

for (int i = 0; i1 < elements.getLength(); i++) {
element = (Element) elements.item(i);
String attributeValue = getAbsoluteURI (url, "href");
if (attributeValue != null) {

element.setAttribute (attributeName, attributevValue);

}

If the page in question defines a frameset, the contents of the src attributes of frame
elements must be replaced so that they are retrieved from the teamXweb server.
Otherwise the href attributes of a (anchor) and area (image map) elements must be
replaced with a JavaScript call that does what has been previously explained for the

Towards an Integrated Approach to Collaborative Web Usage 89

client context. This is done in a method that looks a bit like the following code
fragment (simplified significantly):

/**
* Rewrites the URIs in usual links so that they stay within the system.
* (@param page the (model-)representation of the document on the server
* @param doc the DOM-representation of url
* @param fromFrame the frame in which url resides
*/
public void handlelinkElems (WebPage page, String title, Document doc, String fromFrame) {
// do for all "a" elements in the document

NodeList anchors = doc.getElementsByTagName ("a"); // or "area"
for (int 1 = 0; i < anchors.getLength(); i++) {
Element anchor = (Element) anchors.item(i); // get element
String href = anchor.getAttribute ("href"); // get its href-attribute
if (href != null && 'href.equals("")) {
String target = anchor.getAttribute ("target"); // save target

// if a target attribute exists, it must be removed - or else,
// the new document will be loaded to a frame we cannot control!
anchor.removeAttribute ("target");
// get a unique key for the link
String key = page.addLink (href, findAnchorText (anchor), target);
String params = "";
final int paramStart = href.indexOf ("?");
if (paramStart > -1) {
params = "&" + href.substring(paramStart+1);
href = href.substring (0, paramStart);
}
// now, if it is an http-URI, wrap it into the javascript-statement
// mailto, ftp and other protocols are ignored!
if (href.startsWith ("http")) {
// CASE 1: page is loaded to content frame (simple)
if ((target == null || BrowserFrame.TOP.equals (target))
&& fromFrame.equalsIgnoreCase (BrowserFrame.TOP)) {
href = "javascript:loadURIToContentFrame (’ "+key+"’, ’'"
+href+"’, ’"+params+"’, ’'"+BrowserWindow.FOLLOWED_LINK+"’)";
} else { // CASE 2: page is loaded to some frame
href "Javascript:loadURIToTarget (/ "+key+"’, "
(target == null ? fromFrame : target)
nrs , rmn + href + nrs , rmn + params + nrs , rm
BrowserWindow.FOLLOWED_LINK+"')";

+ o+

}
}
// update the document with the new href-value

anchor.setAttribute ("href", href);

The relevant JavaScript methods are included with the processed document. This is
because from a document, only JavaScript methods defined in that document can be
accessed. Furthermore, the method calls that will update title and statistics frame at
the client are included (see above). Then, the DOM tree is serialized and sent to the
client.

Finally, the relevant updates to the server model must be applied. This includes
updating the current location of the user on the Web as well as appending the currently
viewed page to the history of the current session. This whole process is illustrated in
figure A.4 (2).

Towards an Integrated Approach to Collaborative Web Usage 90

Appendix B: Full Feature-Matrix

To illustrate how teamXweb integrates collaboration features compared to other
systems, a feature matrix with the most important features has been created. A less
detailed overview that also compares teamXweb to major Web communitities has been
included in chapter 4.6. In the rows of the matrix a set of features is listed. The
columns contain whether a given feature is implemented or not in teamXweb (ALPHA
5) and four Web browsers, namely Mozilla 1.2 (alpha), Opera 6.0, Internet Explorer
6.0 and Amaya 6.4. Netscape 4.x was not included because it is out of date.

Towards an Integrated Approach to Collaborative Web Usage 91

Browsers
teamXweb |Mozilla| Opera IE Amaya

1 Common Browser Functionality

1.1 Browsing

1.1.1 Enter URI Manually

1.1.2 Follow Link

1.1.3 Open New Browser Window

1.1.4 Open Link in New Window (I

1.1.5 Save Linked Document to Disk Il

1.1.6 Display most Web Pages as Intended Il Il

1

1.2 History and Bookmarks

1.2.1 History

1.2.1.1 Back Button

1.2.1.1.1 Stack Based Il

1.2.1.1.2 Recency Based (I (I Il Il
E 1.2.1.2 History of Sessions Il Il [l [l
e|1.2.1.3 Browse History Il
: 1.2.1.3.1 History Grouped by Sessions Il Il [l [l
ul1.2.1.3.2 History Grouped by Windows (I (I (I (I
F(1.2.1.3.3 History Grouped by Domains Il Il [l
: 1.2.1.4 Supports Framesets in History (I (I v 2 Il

1.2.1.5 Access History Anywhere Il Il O O

1.2.1.6 Share History with Communities (I (I (I (I

1.2.1.7 History Logging can be Switched O O O

Off

1.2.2 Bookmarks

1.2.2.1 Store Bookmarks [l

1.2.2.2 Store Bookmarks on Framesets (I (I (I Il

1.2.2.3 Modify Bookmarks [l

1.2.2.4 Categorize Bookmarks 3 Il

1.2.2.5 Notification on Bookmark Change * 0 0 0 0

1.2.2.6 View Bookmarks Overview, with O O O

Descriptions

1.2.2.7 Access Bookmarks Anywhere (I (I (I Il

1.2.2.8 Share Bookmarks with Il Il [l [l

Communities

Table B (1): Feature-Matrix of Common Browser Functionality

Footnotes:

1 Many Web browsers implement features not documented in the Web standards (e.g., HTML 4.01 or XHTML 1.0), and
many Web designers use these features. Therefore, when Web pages are shown on other browsers they may not look
as intended. To the user, it makes no difference whether the document is not conforming to the standard - he wants to
see the document rendered nicely. As many Web designers test their pages mainly on the Internet Explorer, that is the
browser with the best "user experience" concerning display Web pages as intended. Mozilla and Opera do have some

Towards an Integrated Approach to Collaborative Web Usage 92

problems with some pages but still display most pages the way they were designed. Amaya strictly implements the
standards and thus fails with many pages, and teamXweb fails particularly with non-standard navigation (e.g., Flash,
JavaScript or Java).

2 Internet Explorer stores the pages that are retrieved. That way, the single documents displayed in a frameset can be
restored from the history. However, the whole frameset can not be restored.

3 Currently only in a flat categorization - future versions will provide hierarchial categorization.

4 Allows the user setting a date when the document is checked for changes and if changes have occured, the user is
notified.

Towards an Integrated Approach to Collaborative Web Usage 93
Browsers
teamXweb |Mozilla| Opera IE Amaya

2 Collaboration
2.1 Work with Communities (create, O O O O
modify, join)
2.2 Sending Messages to Other Users vl 1 w2 2 (I (I
2.3 Sending Messages to Community O O O O
2.4 Accessing Messages Anywhere (I (I (I Il
2.5 Synchronous Communication [Chat] w3 v 4 w5 [l [l
2.6 Chat with Users on Same Page 3 (I (I (I (I
2.7 Annotations
2.7.1 Annotations linked to Document (I Il Il O
Fragments
2.7.2 Annotations linked to Documents Il Il O
2.7.3 Annotations linked to Domains (I (I (I (I
2.7.4 Private Annotations Il Il O
2.7.5 Community Annotations (I (I (I Il
2.7.6 Public Annotations Il Il O

F 2.8 Integrated Interface

e[2.8.1 Same Interface for Annotations and Il Il O [l

a|Messages

: 2.8.2 Integrated Overview over Il Il Il Il

r Annotations and Messages

e |3 Orientation / Statistics

$13.1 View Number of Visits (Self, O O O O
Community, All)
3.2 View Number of Previous Visitors (I (I (I (I
3.3 View Number of Current Visitors Il Il O O
3.4 Links
3.4.1 Overview of Links in the Current Il [l
Document
3.4.2 See How Often Which Link was Il Il [l [l
Followed
3.4.3 See Links Leading to Document [le Il [l [l
3.4.4 See How often Links of Document Il Il [l [l
were Used
3.4.5 See How often Links Leading to O O O O
Document were Used
4 Technical
4.1 Available Platforms All 7 All 8 Most ® | Few '© | Most 1!
4.2 Requires Installation Il
4.3 Requires Authentification ["RE: []13 []13 []13 [114

Table B (2): Feature-Matrix for Collaboration, Orientation and Technical Details

Towards an Integrated Approach to Collaborative Web Usage 94

Footnotes:

1 Currently, only a proprietary messaging system is included. Integration of asynchronous communication via the
standard protocols (SMTP, POP3, IMAP4) is planned for a future version.

2 Via the standard protocols SMTP, POP3 and IMAP4 (only Mozilla). EMail-adresses of other users must be known.

3 Not implemented, yet.

4 With an own client for the standard protocol IRC (no instant messaging).

5 With an own client for I1CQ (instant messenger).

6 However, the number of links pointing to a document can be displayed.

7 teamXweb only requires a browser that supports JavaScript. Such browsers are available on all platforms, and
therefore teamXweb is available on all platforms (at least: platforms with graphical user interfaces).

8 Mozilla builds are available for: Win32, MacOS 9.x, MacOS X, Linux (x86, sparc64, PowerPC), AlX, BeOS, BSD/OS
(bsdi), FreeBSD, HPUX, NetBSD, OpenVMS, OS/2, Solaris. As the source code is available, it may be possible to compile
Mozilla for other platforms as well.

9 Opera is implemented for the following operating systems: Windows, Linux, Mac, OS/2, Solaris, QNX, Symbian.

10 Windows (all 32 bit versions), Mac OS

11 Binary distributions of Amaya are available for: Linux, Sparc /Solaris, AlX, OSF1, Windows (NT, 95 and 98). As the
source code is available, it may be possible to compile Mozilla for other platforms as well.

12 The system can be tested with a guest-account that requires no authentification. However, all guests share the same
account and thus stored information may be lost from one session to another.

13 No authentification is required for common browser functionality. For communication features (e.g., eMail, chat or
instant messaging), authentification is required.

14 No authentification is required for common browser functionality. However, for annotations that shall be stored on a
public server, a server must be found out and configured and such a server may require authentification. This can be a
problem as creating an account on that server is not integrated into Amaya.

Towards an Integrated Approach to Collaborative Web Usage 95

Appendix C: Experiment and User Survey
Raw Materials

Appendix C.1: Experiment Raw Data

The teamXweb prototype has one page that can be used for getting statistical data of
the system. These JSP generated statistics are accessible via
http://teamXweb.com/team Xweb/statistics/systemStats.jsp. Among other information,
there is an overview of all users of the system and how often they have visited
teamXweb, an overview of the communities and an overview of all visited Web sites
and Web pages. These statistics are optimized for being viewed on the Web and
therefore not included in the current work (the short version prints to about 25 pages).
Various snapshots of this data at different phases of the experiment are available at
http://www.team Xweb.com/doc/statistics/index.shtml.

Appendix C.2: Questionnaire used for the User Survey

The questionnaire that has been used for conducting the user survey is available at
http://team Xweb.com/team Xweb/statistics/questionnaire2.jsp. It has been written in
German language as the participants were German and more people are likely to
respond to a questionnaire in their native language. There had been another
questionnaire before that wasn’t used for the results because all the questions covered
in the first questionnaire were also covered in the second questionnaire, and there
were only few responses to the first questionnaire.

The questionnaire basically looks like the results given in the next section.

Appendix C.3: Results of the Survey

This section contains the raw results of the user survey. As the survey has been
conducted with German people, everything is in German. The numbers given are the
number of people who answered the questions positively. The percent numbers given
in parenthesis next to the numbers are related to the all respondents (i.e., 38). For a
summary of the results (in English), see chapter 5.3.

Allgemeine Angaben

Beantwortete Fragebégen: 38

eMail-Adresse: X

teamXweb-login (falls vorhanden): X

Hauptfach: Informatik 29 (76.3 %)
Ethnologie 2 (5.26 %)
Anglistik 1(2.63 %)
Computerlinguistik |1 (2.63 %)
Politikwissenschaft [1 (2.63 %)
Psycholinguistik 1(2.63 %)
I ! I

Towards an Integrated Approach to Collaborative Web Usage

96

L10n

Nebenfach: Computerlinguistik 5(13.2 %)
Kommunikationswissenschaften |5 (13.2 %)
Statistik 4 (10.5 %)
Informatik 3 (7.89 %)
Mathematik 3(7.89 %)
Biologie 2 (5.26 %)
BWL 2 (5.26 %)
Psychologie 2 (5.26 %)
VWL 2 (5.26 %)
Amerikanische Kunstgeschichte |1 (2.63 %)
Ethnologie 1(2.63 %)
Jura 1(2.63 %)
Mikrobiologie 1(2.63 %)
Phonetik 1(2.63 %)
Physik 1(2.63 %)
Politologie 1(2.63 %)
Technik 1(2.63 %)
Semester: 4. Semester |22 (57.9 %)
3. Semester |2 (7.89 %)
8. Semester (2 (7.89 %)
12. Semester |2 (7.89 %)
2. Semester |1 (2.63 %)
7. Semester |1 (2.63 %)
10. Semester|1 (2.63 %)
14. Semester |1 (2.63 %)
Uber welche Veranstaltung hattest XML- Praktikum 3 (7.89 %)
Du von teamXweb erfahren?
Programmierpraktikum 18 (47.37
%)
Ethnologie@lnternet 5(13.16 %)
Informatik HS WWW [18n and|1 (2.63 %)

Sonstige Feldversuchsteilnehmer

8 (21.05 %)

Hattest Du eine__n Vortrag zu ja |16 (42.11 %)
teamXweb gehort? -

nein (20 (52.63 %)
Hast Du Dir die Projektseite mal ja |22 (57.89 %)
angesehen? :

nein{14 (36.84 %)

Frage 1 von 10: Hast Du teamXweb schon ausprobiert?

Ja, ich habe ein Account angelegt

15 (39.47 %)

Towards an Integrated Approach to Collaborative Web Usage 97

Ja, mit dem Gast-Account 1(2.63 %)
Nein, ich habe mir teamXweb noch nicht angesehen.|13 (34.21 %)

Nein, ich werde mir teamXweb nicht ansehen. 8 (21.05 %)

Frage 2 von 10 (nur Antworten, falls vorher Antwort 3 oder 4 gegeben
wurde):
Wieso nicht (Mehrfachangaben méglich)?

Ich hatte leider keine Zeit. 3(7.89 %)
Ich benutze das World Wide Web kaum, da lohnt sich das nicht.|0 (0 %)

Ich hatte Sicherheitsbedenken bzgl. meiner Privatsphére. 3(7.89 %)
Ich wollte nicht Versuchskaninchen spielen. 2 (5.26 %)
Ich wusste nicht, wozu das gut sein soll. 6 (15.79 %)
Mich interessiert sowas nicht. 3(7.89 %)

Sonstiges: |"ich habe noch nicht einmal das session-cookie fir diese umfrage zugelassen...
der hauptgrund war aber absoluter zeitmangel."

"Den Punkt "lch wusste nicht, wozu das gut sein soll" interpretiere ich
dahingehend, dass ich sehr wohl begriffen habe, wozu teamXweb gut sein soll,
aber nicht einsehe, wer diese Funktionalitdt wirklich benétigt. Soll heiBen: Die
Features sind zwar alle ganz nett, aber nichts was es fir mich ann&dhernd
rechtfertigen wirde, mich intensiv genug mit dem System zu beschéaftigen um es
effizient benutzen zu kénnen.

Allgemein interessieren mich solche Anséatze aber auch nicht. Ich benutze ja noch
nicht mal einen Instant Messenger wie 1CQ."

"teamXweb ist wie der Name schon sagt fiir ein ganzes Team gedacht. Ich habe
allerdings niemals in einem geeignetem Team gearbeitet um die Vorteile
teamXwebs nutzen zu kdénnen. Fir das Programmierpraktikum an dem ich
Teilgenommen habe, haben wir das Internet kaum benétigt (allerhéchstens nur
die Java API)."

"Da es in unserem Programmierpraktikum sehr selten etwas im Internet zu
suchen gab, war es nicht sinnvoll teamXweb einzufihren."”

"ich habe grundsatzlich Cookies und Javascript deaktiviert und mdchte das auch
nicht andern.”

Frage 3 von 10 (Nur Antworten, falls man nur das Gast-Account getestet
hat):
Wieso hast Du kein eigenes Account angelegt (Mehrfachangaben maéglich)?

Ich bin noch nicht dazu gekommen (oder: habe sowieso keine Zeit). |0 (0 %)
Ich benutze das World Wide Web kaum, da lohnt sich das nicht. 0 (0 %)
Ich hatte Sicherheitsbedenken bzgl. meiner Privatsphére. 0 (0 %)
Ich wollte nicht Versuchskaninchen spielen. 0 (0 %)
Ich wusste nicht, wozu das gut sein soll. 0 (0 %)
Mich interessiert sowas nicht. 0 (0 %)
Mich hat der Versuch mit dem Gast-Account abgeschreckt. 0 (0 %)
I

Towards an Integrated Approach to Collaborative Web Usage 98

|Sonstiges: |

Frage 4 von 10 (nur Antworten, wenn man ein Account auf teamXweb hat):
Wie oft hast Du teamXweb benutzt?

1-4 Sessions. 13 (34.21 %)

5-10 Sessions. 1(2.63 %)

Mehr als 10 Sessions (weiter mit Frage 6 [#F6]).|1 (2.63 %)

Frage 5 von 10 (nur Antworten, wenn man teamXweb weniger als 10 Mal
benutzt hat):
Wieso nicht 6fters (Mehrfachangaben méglich)?

teamXweb war mir zu kompliziert. 1(2.63 %)
teamXweb hat mir personlich nichts gebracht. 4 (10.53 %)
Ich habe meine Zugangsdaten vergessen. 2 (5.26 %)
Da waren zu wenige Leute, die ich kannte. 1(2.63 %)
Da war zu wenig Inhalt, der mir etwas gebracht hatte.|4 (10.53 %)

Sonstiges:

"bislang zu selten Gelegenheit. Der Nutzen von teamXweb hangt entscheidend
von den Inhalten ab, die wegen der kurzen Zeit verstandlicherweise noch nicht
sehr lGppig waren "

"Lesezeichen damals noch nicht exportierbar"

"Ich denke, das TeamXWeb vor allem fiir Arbeitsgruppen gut geeignet ist, die
gemeinsam (ber ein homogenes Thema recherchieren. Da ich momentan nicht in
so einer Arbeitsgruppe bin, fehlt da die Motivation. Ausserdem st es
umstandlicher zu bedienen als ein normaler Browser und alles wird mitgeloggt,
deshalb nehme ich es auch nicht fir Recherchen zu anderen Themen, an denen
ich alleine arbeite.”

"lch glaube perdnlich, dass die Abwesenheit eines konkreten Projektes den
Ausschlag gegeben hat.Okonomisch ausgedriick scheint die Angebotsseite nicht
auszureichen - eine direkte Nachfrage wére dringend notwendig gewesen.

Ich habe Uberlegt es mit meinen Arbeitskollegen auszuprobieren, da wir haufig
auf die gleichen Seiten zugreifen. Ich habe mich aber aus diesen Grinden
dagegen entschieden:

1) Unbekanntes Konzept, d.h. ich muss es positiv darstellen und "vermarkten".
Dadurch Ubernehmen ich aber auch die Verantwortung dafur.

2)Wir benutzen in erster Linie online Literaturrecherchetools, die praktisch alle
entweder Java oder Java-Skript verwenden.

3)Das System war zu anfallig. Ich hab' dir ja 1-2 mal deswegen gemailt. Der
Punkt ist, dass ich nicht das Gefuhl hatte, das meine mdglichen
Kooperationspartner in IT-Sachen eine genlgend groBe Toleranzgrenze fir so
etwas haben."

"ich werde es ab jetzt regelmaessig benutzen!"

"mein Surfverhalten ist ganz anders: ich brauche mehr browserfenster und ich
will schnell zum Ziel: teamXweb ist eher eine eigene Anwendung zur Nutzung des
Internet. Ich mag mich nicht umstellen, weil ich keine Zeit verlieren will (kénnte
sich andern, wenn das Internet mehr im Vordergrund steht...)"

Towards an Integrated Approach to Collaborative Web Usage 99

Frage 6 von 10: Wie gut haben Dir folgende Teile von teamXweb gefallen bzw. wie
wichtig waren Sie Dir bei der Benutzung?

Erlauterung:Es gibt hier fir jeden Teilbereich von teamXweb zwei Werte: als wie
wichtig hast Du den jeweiligen Bereich empfunden, und wie gut hat Dir die
Umsetzung im Prototypen von teamXweb gefallen. Diese Unterscheidung ist wichtig,
weil in einer spéateren Implementierung bestimmte Sachen ganz anders umgesetzt
werden kénnten.

Hier jeweils den zutreffenden Wert auf der Skala anklicken, die von "gut" bis
"schlecht" bzw. von "wichtig" bis "unwichtig" geht. Die einzelnen Punkte kdnnt ihr
auch mit Noten von 1 bis 6 interpretieren (ganz links wéare dann also "sehr gut", die
zweite von links "gut" usw. bis ganz rechts dann "ungenlgend").

"die ladezeiten waren zu lang und das layout ist ziemlich untbersichtlich und
unelegant."”

Das Benutzerinterface: wichtig|9|7|0|0|1|0 |unwichtig

gut|0(5(8|2(2|0|schlecht

Dlass man es ohne Installation wichtig|8|5|2[0|2|0 |unwichtig
direkt im Web starten kann:

gut|9(6{1|1(0|0|schlecht

Dass man Bookmarks mit

; wichtig|4(8|2|2|1|0 [unwichtig
anderen teilen kann:

gut|{4]9(2|1|1|0|schlecht

Dass man seine eigenen Bookmarks wichtig|8|5[1[1]1|0|unwichtig
Uberall benutzen kann:

gut|4|6|4|1|1|0|schlecht

Dass man die History mit wichtig|0|2|7[2|3|2 |unwichtig
anderen teilen kann:

gut|2(5|5|3 (1|0 |schlecht

Dass man seine eigene History wichtig|1/2|7[5|0|1 |unwichtig
Uberall verfagbar hat:

gut|1(6(7|1(0|1|schlecht

Die Kommuni_kgtion innerhalb wichtig|4|6(3[1]1]1 |unwichtig
von Communities:

gut|1|3|8|4|0|0|schlecht

Die Kommunikation bzw. Notizen

)) wichtig|[5(7|2|1|1|0 [unwichtig
auf Webseiten und Domains:

gut|2(7(6|0(1|0|schlecht

Frage 7 von 10: Was kénnte Dich motivieren, teamXweb 6fters bzw. Uberhaupt zu
benutzen (Mehrfachangaben mdglich)?

Nichts. 1(2.63 %)
Mehr, bessere Features (bitte Fragen 9 und 10 beantworten!). (6 (15.79 %)
Mehr Leute, die es schon benutzen. 13 (34.21 %)
Freunde, die es benutzen und es mir empfehlen. 15 (39.47 %)
Wenn ich Geld dafiir bekomme. 4 (10.53 %)
Wenn ich Geld daflir bezahlen muss - nur wenn es 0 (0 %)
etwas kostet, ist es auch etwas wert!

Towards an Integrated Approach to Collaborative Web Usage 100

Privater Server fir meine Community/Firma/Arbeitsgruppe, 7 (18.42 %)
auf den sonst niemand zugreifen kann.

Frage 8 von 10: Weitere Ideen/Wiiinsche?

"Tastaturunterstitzung”
"werde mir zeit nehmen um es richtig auszuprobierne"
"eien dezente einbindung in den internetexplorer ?"

"Mein normaler WebBrowser gefallt mit sehr gut, und von Tag zu Tag besser (= Galeon). Die
Features von teamXweb finde ich auch klasse.

Am liebsten héatte ich es, wenn teamXweb flr mich "transparent" ist, egal welchen Browser
ich wo verwende und ich trotzdem all die features habe. Fazit: teamXweb reduziert sich auf
einen link (fast unsichtbar) hinter dem sich die ultimative Kommunikationsplattform befindet.
Bookmarks méchte ich am liebsten im-/exportieren kénnen, um deren fortbestand auch tber
die "Lebenszeit" des teamXweb-Projektes gesichert zu wissen, bzw. um mit meinen
bestehenden Bookmarks gleich losarbeiten zu kdénnen (evtl Formatstandarts wie XBEL,
Netscape-format?)

Alle Seiten miuissen korrekt dargestellt werden, dafir wiirde ich auch eine zusatzliche
Software (Plugin 0.4.) NICHT!!! auf meinem Rechner installieren.”

"Ein Plug-In oder eine andere Client- bzw. lokale L6sung auf dem Rechner héatte den Vorteil,
daB man sich nicht jedesmal anmelden miBte, bevor man ins Netz geht. Das war irgendwie
mBig - ich hab's auch einfach irgendwann vergessen."

"1. schnellere ladezeiten

2. schoneres layout und schmalere balken oben und unten

3. mehr Ubersichtlichkeit

4. klarheit dariber, wann man fir andere sichtbar ist, oder nicht.
5. behebung von darstellungsfehler, zB umlaute

Frage 9 von 10: Welche Verbesserungen / neuen Features wirdest Du Dir von
teamXweb wiinschen?

Alle Seiten missen korrekt dargestellt werden, daflr 4 (10.53 %)
wirde ich auch eine zusétzliche Software (Plugin 0.4.)
auf meinem Rechner installieren.

Einen Chat mit anderen Leuten, die auf meiner Seite sind 6 (15.79 %)
bzw. die in einer meiner Communities sind.
Die Mdglichkeit, mir Nachrichten auf Seiten/Communities/ 4 (10.53 %)

an mich selbst per eMail zusenden zu lassen (damit ware
jede Seite / Community automatisch auch eine
eMail-Mailing-List, die man entweder per eMail oder in
teamXweb lesen kann).

Die Mdglichkeit per eMail Nachrichten an/auf andere teamXweb |7 (18.42 %)
Mitglieder / Communities / Webseiten zu schicken.

Frage 10 von 10: Weitere Vorschldge, Anmerkungen, Kommentare, Fragen (auch
zum Fragebogen):

Towards an Integrated Approach to Collaborative Web Usage 101

"auf keinen fall sollte zusatzsoftware (bes. plugins) nétig sein,
damit die platformunabhangigkeit weiterhin gewahrleistet ist.
. von einer java-vm mal auf dem client mal abgesehen."”

"- graphische Darstellung der Zugriffshaufigkeiten einzelner Seiten

- Seitenbewertung und aktuelle Bestenliste

- Warum erscheinen Seiten, die in der Liste der ausgehenden Verweise einer Seite
ausgewahlt werden, in einem normalen Browserfenster (ohne TeamXWeb)?"

"Sorry, aber ich denke, dass teamxweb nur eine Kombination von Diensten ist, die es schon
gibt:

Wenn ich einen Kollegen eine URI geben will, maile ich sie ihm.

Wenn ich mit ihm chatten will, benutze ich IRC

usw...

der Vorteil bei diesen Methoden ist, dass man sich nirgends anmelden muss und dass auch
keine zusaetzlichen Installationen noetig sind.

mfg, Christopher”
"Das schwerste ist es sicher das bestehende Userverhalten auf Deine Wiinsche umzubiegen”

"zb ein (httpS)-webinterface fuer einen pop/imap (evtl mit ssl) mailaccounnt MEINER wahl.
das waer sehr praktisch, auch wenns wahrscheinlich etwas "abseits" des projekts ist ;-)"

"Hi Holger,

sorry, hatte wirklich keine Zeit, mir das nadher anzuschauen, drum auch nur diese dirftigen
Angaben. Aber wenn dir das was hilft (wie du's in Gurus geschrieben hast), bitte... ;-)

Toby (W.)"

"bei frage 6.1: man sollte trennen zwischen Aussehen, Robustheit/Bugs und
Uebersichtlichkeit/Einfachheit der Bedienung"

"paar ldeen:

- warum nicht Nutzerinterface in eigenem Browserfenster und die Website ganz normal im
zweiten Browser, der mit nem Plugin 0.4. einen Seitenwechsel an den Server schickt und
damit das Userinterface aktualisiert?

- teamXweb miuisste weniger sichtbar sein, aber mir das gefihl eines unglaublichen
mehrwertes bringen, damit ich unglaublich motiviert damit arbeite"

"Also, die ldee finde ich grundsétzlich gut. Allerdings ist das alles noch sehr schlecht und
unfreundlich umgesetzt (es ist eine groBe Leistung, keine Frage, und es funktioniert gut,
aber ist Gberhaupt nicht intuitiv oder Ubersichtlich). Z.B. hatte ich bei den ersten Versuchen
(und die zahlen!) berhaupt keinen Uberblick, ob die Messages und Seiten nun nur innerhalb
von meiner Community stattfinden oder allgemein. Da braucht man glaub ich eine klarere
Trennung. Ich will nur in einer Community sein, sonst wird es untbersichtlich.

Wenn ich auf eine Community klicke, erwarte ich z.B., dass alle Nachrichten die dazu Bezug
haben, agezeigt werden. Aber ich sehe nur die Mitglieder.

Dann hab ich ein Weile gebraucht um die Community-bezogenen Bookmarks oben im
Pulldown zu finden. Das alles sollte schon so eingestellt sein, weil ich das Ding ja benutze,
um mit anderen bookmarks zu teilen.

Towards an Integrated Approach to Collaborative Web Usage 102

Die Sache mit der History finde ich ganz problematisch. Das héalt einem am meisten von der
wirklichen Benutzung ab. Uberhaupt ist diese Browser im Browser-Sache recht unpraktisch.
Viel besser fande ich ein Plugin: Man arbeitet wie gewohnt mit seinem Browser, kann aber
bei Bedarf eine seite mit einem Kommentar an eine Community weiterleiten. So etwas wie
Alexa, das als tool oben im Browser integriert wird. Oder meinetwegen auch ein
eigenstandiges Programm, welches die aktuelle Browserzeile ausliest.

Die grundsétztliche ldee vom kooperativen Browsen finde ich dagegen sehr gut und wichtig.

Wé&hrend das eigentliche Fenster mit den Messages sehr Ubersichtlich und vertraut ist, hatte
ich groBe Probleme, die ganzen verschiedenen Formen und Typen von Notizen, Meldungen,
Domains (communicator.jsp) - die ja wieder aus verschiedenen Communitys kommen
kénnen und von mir, von Personen, von Gruppen, auseinanderzuhalten. Schlimmer noch, ich
empfand es als zu viel Information, wollte es gar nicht auseinanderhalten.

Die eigentliche Brwosing-Funktion funktioniert dagegen ganz gut. Schén auch, dass er sich
farblich von den ganzen Notizen-Seiten abhebt.

AuBerdem ist es anscheinend nicht mdglich, Seiten- und domain-Notizen anzuklicken.
Vermutlich ist es technisch nicht madglich, diese dann im Browser-Browser-Fenster
anzuzeigen?

Schodn ist die Mdglichkeit, im Browser die Begrenzungen zu verschieben, allerdings habe ich
das erst spat bemerkt.

Insgesamt sehe ich die Hauptprobleme also in der Tatsache, dass ich beim Surfen meine
Wege nicht fiir Fremde aufzeichnen will. Zweitens in der fehlenden Ubersichtlichkeit vor
allem bei den zahlreichen unterschiedlichen Notizen. Wichtigstes Problem ist aber, dass ich
beim Browsen nicht auf meinen eigenen Browser verzichten will. Dann kénnte ich mir ein
Plugin, welches sich auf die wesentlichen Punkte des Informationsaustauschs beschrénkt, als
sehr nltzlich vorstellen. Wesentlich ware fir mich:

URI an die community senden

URI kommentieren, mit Méglichkeit einen Thread daran anzuschlieBen.

Allgemein diskutieren.

ein weiteres Problem haben wir in unserem Ethnologie-Seminar bemerkt: Die Gruppe
kommunizierte - wenn Uberhaupt Gber Mailinglist. So lange der Umgang mit dem TeamxWeb
Tool nicht selbstverstandlich ist, sollte man sich Uberlegen, die Kommunikation automatisch
an die Mailingliste zu spiegeln, um auch technisch ageneigte Mitglieder miteinzubeziehen und
um nicht zwei verschiedene Plattformen bei der gemeinsamen Kommunikation zu haben.”

Table C.3 (1): Raw Results of the User Survey

Towards an Integrated Approach to Collaborative Web Usage 103

Appendix D: Simple Report Format (SRF)

SRF[Simple Report Format] is an XML application that was developed and used to
format both the project thesis ([Wagner2002]) and this diploma thesis. It consists of a
DTD[Document Type Definition] which is based on XHTML but adds many tags that
were missing in XHTML. In particular, tags for a structure of the document are added.
Furthermore, an XSL[eXtensible Stylesheet Language] stylesheet has been developed
which is used to convert a document formatted with SRF to XHTML that can be
displayed in any common Web browser.

The XSL stylesheet implements the following features:

e Modelling the structure of the document with chapter, section and subsection, as
well as appendix, appsection and appsubsection. These are automatically
enumerated.

e Automatically building a table of contents with hyperlinks to the sections.
Furthermore, a brief table of contents can be generated that only contains
chapters and appendices.

e Acronyms and abbreviations that are automatically expanded for printing, while
being displayed as a popup on screen. Acronyms and abbreviations can be
included in an index.

e Definitions are also included in an index. That way, an index of keywords can
easily be built. For each definition, the section in which it was defined is shown in
the index and a hyperlink to the definition is automatically generated.

e (HTML-)Tables and figures with captions and summaries, that are automatically
enumerated with the section they are used in. Tables and figures are also
included in an index. Figures can be scaled conveniently to fit on screen or paper.

e References and citations that automatically link to the bibliography.

e Footnotes that can be placed anywhere in the document and that link back and
forth: if the user clicks on the number of the expanded footnote, the place where
the footnote was used is shown.

Both the DTD and XSL stylesheet can be downloaded from:
http://www.xml-formats.org/formats/srf/.
It can be used free of charge.

Towards an Integrated Approach to Collaborative Web Usage 104

Appendix E: Indices
Appendix E.1: Terms

The following list gives an overview of all terms that are used throughout this paper
including links to the actual definitions as well as the sections where they have been
given:

hub-and-spoke dynamic trees (chapter 1.2.5)
moderated synchronous communication (chapter 2.4)
(community) paths (chapter 1.1)

account manager (appendix A.3.2)

anchor (chapter 1.1)

asynchronous communication (chapter 2.4)
authentificated user (appendix A.1)
authority (chapter 1.2.4)

bibble (chapter 1.1)

bibliographic coupling (chapter 1.2.4)
bibliometrics (chapter 1.2.4)

browser window (appendix A.3.2)

browsing (chapter 1.1)

browsing state (chapter 4.2)

cache-busting (chapter 1.2.2)

chance contact (chapter 1.1)

client (chapter 1.1)

closed groups (chapter 4.1)

co-citation (chapter 1.2.4)

collaboration (chapter 2.1)

collaborative filtering (chapter 1.2.3)
collaborative Web tool (chapter 1.1)
communication view (appendix A.3.2)
communicator (appendix A.3.2)
communities (chapter 2.2)

community (chapter 4.1)

community manager (appendix A.3.2)
consulting (chapter 1.1)

content frame (chapter 3.3)

content page (chapter 1.2.4)

content-based recommender systems (chapter 1.2.3)
control (chapter 2.6)

cookie (chapter 1.1)

cooperation (chapter 2.1)

cooperative surfing (chapter 1.2.6)
coordinated search (chapter 1.1)
destination page (chapter 1.2.4)
differentiated group searching (chapter 1.1)
document (chapter 2.3.1)

duration of existence of a community (chapter 2.2)
duration of membership (chapter 2.2)

early rater problem (chapter 1.2.3)

episode (chapter 1.1)

feedback (chapter 2.6)

gray sheep (chapter 1.2.3)

group recommendation (chapter 1.2.6)
group searching (chapter 1.1)

guest account (appendix A.1I1)

head page (chapter 1.2.4)

Towards an Integrated Approach to Collaborative Web Usage

history (chapter 2.3.3)

history view (appendix A.3.2)

host page (chapter 1.1)

hotlist (chapter 1.2.1)

hub (chapter 1.2.4)

identified visitor (chapter 1.2.2)

problem of identity of bookmarks (chapter 2.3.4)
independent Web page (chapter 1.1)

index page (chapter 1.2.4)

individual trails (chapter 1.1)

Java APIs (chapter 5.1)

Java[tm] API for XML Processing (appendix A.2)
joint search (chapter 1.1)

level 0 Web tool (chapter 1.1)
level 1 Web tool (chapter 1.1)
level 2 Web tool (chapter 1.1)
level 3 Web tool (chapter 1.1)
level 4 Web tool (chapter 1.1)

link (chapter 1.1)

following a link (chapter 2.3.2)

LiveConnect (appendix A.2)

document locations (chapter 2.3.1)
many-to-many communication (chapter 2.4)
members (of a community) (chapter 2.2)
membership (of a community) (chapter 2.2)
moderated communication (chapter 2.4)
moderator (chapter 2.4)

navigation behavior (chapter 1.1)
navigation event (chapter 4.2)

navigation frame (chapter 3.3)

note editor (appendix A.3.2)

one-to-many communication (chapter 2.4)
one-to-one communication (chapter 2.4)
one-to-self communication (chapter 2.4)
organizational home pages (chapter 1.2.4)
orientation frame (chapter 3.3)

page view (chapter 1.1)

parasite (chapter 1.2.6)

path model (chapter 1.2.3)

personal home pages (chapter 1.2.4)
product-related information exchange (chapter 1.1)
progress-related information exchange (chapter 1.1)
proxy (chapter 1.1)

publisher (chapter 1.1)

recency-based history (chapter 1.2.5)
recipient (chapter 2.4)

recommendation support systems (chapter 1.2.3)
recommender system (chapter 1.2.3)
recurrence rate (chapter 1.2.1)

reference page (chapter 1.2.4)

resource (chapter 1.1)

scope of communication (chapter 2.4)
scriptlets (appendix A.2)

secret groups (chapter 4.1)

document sections (chapter 2.3.1)

sender (chapter 2.4)

serendipitous altruism (chapter 1.1)

server (chapter 1.1)

server session (chapter 1.1)

servlet container (appendix A.2)

105

Towards an Integrated Approach to Collaborative Web Usage

session history (chapter 4.2)

session visitor (chapter 1.2.2)
simultanuous round-trip engineering (appendix A)
site maps (chapter 1.2.5)

source index page (chapter 1.2.4)
sparsity problem (chapter 1.2.3)

spatial layouts (chapter 1.2.5)
stack-based history (chapter 1.2.5)
startup-screen (appendix A.3.2)
subgroups (chapter 4.1)

subsite (chapter 1.1)

synchronous communication (chapter 2.4)
temporal organisation (chapter 1.2.5)
Together Control Center (appendix A)
tracked visitor (chapter 1.2.2)
unidentified user (chapter 1.2.2)
unmoderated communication (chapter 2.4)
unmoderated communication (chapter 2.4)
URI rewriting (chapter 3.3)

user (chapter 1.1)

user (appendix A.1)

user session (chapter 1.1)

Web Application Diagram (appendix A.3)
Web browser (chapter 1.1)

Web client (chapter 1.1)

Web collection (chapter 1.1)

Web content community (chapter 1.1)
Web content mining (chapter 1.2.2)

Web core (chapter 1.1)

Web graph (chapter 1.1)

Web mining (chapter 1.2.2)

Web page (chapter 1.1)

Web resource (chapter 1.1)

web ring (chapter 1.2.4)

Web site (chapter 1.1)

Web site publisher (chapter 1.1)

Web tool (chapter 1.1)

Web usage (chapter 1.1)

Web usage mining (chapter 1.2.2)

Web user community (chapter 1.1)

Appendix E.2: Acronyms and Abbreviations

106

The following list gives an overview of all acronyms and abbreviations that are used
throughout this paper including links to the first use as well as the chapter where it has

occured:

API: Application Program(ming) Interface (chapter 1.2.6)
DOM: Document Object Model (appendix A.2)

DTD: Document Type Definition (appendix D)

e.g.: exempli gratia (chapter 1.1)

etc.: et cetera (and other things / and so forth) (chapter 1.2.2)

HTML: HyperText Markup Language (chapter 2.3.2)
HTTP: HyperText Transfer Protocol (chapter 1.2.2)

i.e.: id est (chapter 2.3.3)

IDE: Integrated Development Environment (appendix A)
IRC: Internet Relay Chat (chapter 6)

Towards an Integrated Approach to Collaborative Web Usage 107

LEAD: Live Early Adoption and Demonstration (chapter 1.2.5)
MVC: Model-View-Controller (appendix A.3)

NCSA: National Center for Supercomputing Applications (chapter 1.2.1)
SRF: Simple Report Format (appendix D)

SSL: Secure Socket Layer (appendix A.2)

UML: Unified Modelling Language (chapter 2.3.3)

URI: Uniform Resource Locator (chapter 1)

vs.: versus (chapter 2.4)

W3C: World Wide Web Consortium (chapter 1.2.5)

WWW: World Wide Web (chapter 1.2.1)

XML: eXtensible Markup Language (chapter 4.4)

XSL: eXtensible Stylesheet Language (appendix D)

XUL: XML User-interface Language (chapter 6)

Appendix E.3: Tables

The following table gives an overview of all tables that are included in this paper with a
link to the table, its caption and a summary describing the contents of the table:

Table Caption / Summary

Table 1.1 Classification of Web Tools after [Cheung]
This table gives an overview of WebTools as they have been defined by
[Cheung]

Table 4.2 Navigation events captured by teamXweb

This table gives an overview of the navigation events captured by
teamXweb: Window opened, link followed, form filled, URI entered, back,
forward, home, history state restored, bookmark state restored, window
closed.

Table 4.6 Feature-Matrix comparing teamXweb, Major Web Browsers and
Web Communities
This table compares the features of teamXweb with with those of major
Web browsers and communities.

Table 5.3 (1) Majors of the Students Participating in the User Survey
This table shows the majors of the students participating in the experiment.
Table 5.3 (2) Participation in the User Survey

This table shows the participation in the user survey, by groups and overall.
Participation amounts to 25% both overall and approximately in all of the
groups (range from 20% to 36%, mean is 26%).

Table 5.3 (3) Evaluation of Collaboration Features
This table compiles the results of the evaluation of features required for
collaboration.

Table 5.3 (4) Motivations to Use the System more often
Results of the question what could motivate the users to use the system
more often.

Table B (1) Feature-Matrix of Common Browser Functionality

This table compares the features concerning common browser functionality
of teamXweb with Mozilla, Opera, Internet Explorer and Amaya.

Table B (2) Feature-Matrix for Collaboration, Orientation and Technical Details
This table compares the features concerning collaboration, orientation and
technical details of teamXweb with Mozilla, Opera, Internet Explorer and
Amaya.

Table C.3 (1) Raw Results of the User Survey
This table contains the raw results of the user survey. It is structured

Towards an Integrated Approach to Collaborative Web Usage 108

exactly like the questionnaire itself, but instead of checkboxes and
radiobuttons to select, the results are included.

Appendix E.4: Figures

The following table gives an overview of all figures that are included in this paper with
a link to the figure, its caption and a summary describing what the figure illustrates:

Figure Caption / Summary

Figure 3.1.1 Illustration of Locating the Server at the Web Server
The Web client communicates with the Web server on which also the
components for collaborative features reside. When the client
communicates with other Web servers, no collaboration features are
available.

Figure 3.1.2 Illustration of Locating the Server at an Intermediary Proxy
The client accesses all Web content via an intermediary proxy. That proxy
also provides the components for collaboration. It forwards the requests
from the client(s) to the servers and the responses from the servers to the
clients.

Figure 3.1.3 Illustration of a Peer-to-Peer Architecture
All collaboration components exist on all peers, data is shared between
each of them. In this diagram, the peers are the Web clients and are
implemented in a collaboration that also provides browsing functionality.
However, the peer-to-peer architecture could also be used for Web servers
or proxies. An optional mediator distributes addresses of the (peer-to-peer)
clients.

Figure 3.1.4 Illustration of the Architecture with an Independent Server
A collaborative client application that directly gets the content from its
sources communicates with an independent collaboration server that
provides components for collaboration features.

Figure 3.3 (1) Illustration of the Meta-Browser Architecture

An independent server acts both as a proxy for the actual content and a
Web application server for the collaborative features. On the clients, any
Web browser can be used to display the collaborative Web application and
the actual Web contents. The same browser can also be used to do non-
collaborative Web browsing. A page processor forwards the client’s requests
to the original servers, processes the responses and forwards them back to
the clients.

Figure 3.3 (2) Screenshot of the Meta-Browser within a Browser (Opera)
A Screenshot of the Meta-Browser within the Opera Browser. The frames
are marked with red rectangles: navigation frame, content frame and
orientation frame.

Figure 4.2 Screenshot of the teamXweb Session History
A screenshot of the teamXweb history dialog, where the user can select a
community, and if available one of the members of the community. The
sessions are sorted by time and for each session, there is a detailed
description with each action listed.

Figure 4.3 Screenshot of the teamXweb Bookmarks
A screenshot of the teamXweb bookmarks dialog. Note that the states of
framesets can also be stored as bookmarks.

Figure 4.4 Screenshot of the teamXweb Communication Overview
Screenshot of the teamXweb communication overview that illustrates how a
high level of integration is achieved by giving the user an overview of all
messages distributed at the various parts of the system. This includes
messages the user has received from or sent to other users, messages
within communities and annotations on domains and Web pages.

Towards an Integrated Approach to Collaborative Web Usage 109

Figure 5.3 (1)

Figure 5.3 (2)

Figure 5.3 (3)

Figure 5.3 (4)

Figure 5.3 (5)

Figure 5.3 (6)

Figure 5.3 (7)

Figure 5.3 (8)

Figure A.1 (1)

Figure A.1 (2)

Figure A.3.1 (1)

Figure A.3.1 (2)

Figure A.3.2 (1)

Figure A.3.2 (2)

Figure A.3.3

User Interface
Shows how users evaluated importance and quality of the user interface of
teamXweb. While importance was rated very high, the quality was rated
medium to good.

No Installation

Shows how users evaluated importance and quality of having no need for
installation of the system. This was considered very important and very well
implemented.

Share Bookmarks

Shows how users evaluated importance and quality of sharing bookmarks
among communities. This has been considered important and well
implemented.

Access Bookmarks Anywhere
Shows how users evaluated importance and quality of being able to access
their bookmarks anywhere on the Internet. This has been considered very
important and well implemented.

Share History

Shows how users evaluated importance and quality of sharing their session
history among communities. This has been considered more or less
important and well implemented.

Access History Anywhere

Shows how users evaluated importance and quality of being able to access
their session history anywhere on the Internet. This has been considered
moderately well implemented and a little less important.

Communication within Communities

Shows how users evaluated importance and quality of communication
within communities. This has been considered relatively important but only
moderately well implemented.

Annotations

Shows how users evaluated importance and quality of annotating Web
resources. This has been considered relatively important and moderately
well implemented.

Uses Cases for the teamXweb System

This Use Case diagram gives an overview of the Use Cases that teamXweb
shall implement. It is divided into the following areas of functionality: User
Management, Common Browser Functionality, History, Communities and
Communication. There are two different types of actors: user and
authentificated user.

Activities for Registering with or Logging in to the System
This Activity Diagram shows the process of registering with or logging in to
the system from the user’s perpective.

Core Model of teamXweb
An abstract overview of the core model of teamXweb.

Communication in teamXweb
An overview of the communication system of teamXweb.

The JSPs modelling the GUI of teamXweb (Part 1)
Web Application diagram with JSPs used for logging in, the meta-browser,
account management and communities.

The JSPs modelling the GUI of teamXweb (Part 2)
Web Application diagram with JSPs used for bookmarks and history, and
communication.

Controller Part of the teamXweb User Interface
This Class Diagram illustrates how Servlets in teamXweb use helper classes
to implement their functionality the Servlets in the diagram convert HTTP

Towards an Integrated Approach to Collaborative Web Usage 110

Figure A.4 (1)

Figure A.4 (2)

Figure A.4 (3)

requests to method calls on the helper classes which are subclasses of
ServletSupport.

Loading a Web Page (Client Perspective)
This Activity Diagram illustrates how a new Web page is loaded to the client
(e.g, after a hyperlink has been followed), from the client’s perspective.

Loading a Web Page (Server Perspective)
This Activity Diagram illustrates how a new Web page is retrieved and
processed on the server, after the client has requested it.

Classes implementing the Proxy and URI-Rewriting Logic

This Class Diagram shows the classes directly involved in retrieving and
processing Web pages for the meta-browser. It includes the Servlet that
gets the request from the client via HTTP.

Towards an Integrated Approach to Collaborative Web Usage

Appendix F: References

[Ament01999]

[Armstrong1997]

[Barret]

[Bellotti]

[Benyon]

[Borges99a]

[Borges99b]

[Borges2000a]

[Borges2000b]

[Bush]

[Bush]

[Cabri]

[Cadez]

[Catledge]

[Chakrabarti]

[Chalmers98]

[Chalmers2000]

Brian Amento, Will Hill, Loren Terveen, Deborah Hix, Peter Ju: An empirical Evaluation of
User interfaces for Topic Management of Web Sites. Proceedings of CHI’99, ACM Press,
Pittsburg PA, May 1999, pp. 552-559. Available at Researchlndex (Citeseer):
http://citeseer.nj.nec.com/amento99empirical.html

R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell: WebWatcher: A learning
Apprentice for the World Wide Web. In Proc. of the 1995 AAAI Spring Symposium on
Information Gathering from Heterogeneous, Distributed Environments, 1995. Available at
ResearchIindex (Citeseer): http://citeseer.nj.nec.com/armstrong97webwatcher.html

Barret, R., P. Maglio and D. Kellem: How to Personalize the Web. In Proc. CHI 97, ACM,
1997, pp. 75-82. Accessible at:
http://www.acm.org/sigchi/chi97/proceedings/paper/rcb-wbi.htm

Bellotti, V. A. Sellen: Design for Privacy in Ubiquitous Computing Environments. In G. de
Michelis, C. Simone and K. Schmidt (Eds.) Proc. Third European Conference on Computer
Supported Cooperative Work, (ECSCW °93), pp. 77-92. Kluwer, 1993.

D. Benyon and K. H86k: Navigation in Information Spaces: supporting the individual. In
Human-Computer Interaction: INTERACT'97, S. Howard, J. Hammond & G. Lindgaard
(editors), pp. 39 - 46, Chapman & Hall, July 1997.

Accessible at: http://www.sics.se/~kia/publications.html

Borges, J. and M. Levene: Heuristics for mining high quality user web navigation
patterns. Research Note RN/99/68, Department of Computer Science, University College
London, Gower Street, London, UK, October 1999. Available at Researchlndex
(Citeseer): http://citeseer.nj.nec.com/borges99heuristics.html

Borges, J. and M. Levene: Data Mining of User Navigation Patterns. In Proc. of the Web
Usage Analysis and User Profiling Workshop, pp. 31-36, San Diego, California, August
1999. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/borges00data.html

Borges, J. and M. Levene: A heuristic to capture longer user web navigation patterns. In
Proc. of the first International Conference on Electronic Commerce and Web
Technologies, Greenwich, U.K., September 2000. Available at ResearchIndex (Citeseer):
http://citeseer.nj.nec.com/borges00heuristic.html

Borges, J. and M. Levene: A Fine Grained Heuristic to Capture Web Navigation Patterns.
In SIGKDD Explorations, Volume 2, Issue 1, 2000, pp. 40-50. Available at
ResearchIindex (Citeseer): http://citeseer.nj.nec.com/303916.html

Steve Burbeck: Applications Programming in Smalltalk-80(TM): How to use Model-View-
Controller (MVC). 1987, 1992.
Accessible at: http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

V. Bush: As We May Think. Atlantic Monthly, July 1945. Reprinted in ACM Interactions 3
(2), March 1996, pp. 37-46.
Accessible at: http://www.isg.sfu.ca/~duchier/misc/vbush/

G. Cabri, L. Leonardi and F. Zambonell: Supporting Cooperative WWW Browsing: a
Proxy-based Approach. 7th Euromicro Workshop on Parallel and Distributed Processing,
Madeira (P), pp. 138-145, Feb. 1999. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/cabri99supporting.html

Cadez, |., D. Heckerman, C. Meek, P. Smyth, and S. White: Visualization of navigation
patterns on a web site using model based clustering. In Proceedings of the sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston,
Massachusetts, August 2000. Available at Researchlndex (Citeseer):
http://citeseer.nj.nec.com/cadez00visualization.html

Catledge, L.D. and J.E. Pitkow: Characterizing browsing strategies in the world wide web.
Computer Networks and ISDN Systems, 27(6): 1065-1073, April 1995. Available at
ResearchIindex (Citeseer):

http://citeseer.nj.nec.com/catledge95characterizing.html

Chakrabarti, S., B.E. Dom, D. Gibson, J.M. Kleinberg, S.R. Kumar, P. Raghavan, S.
Rajagopalan and A. Tomkins: Hypersearching the Web. Scientific American, June 1999.
Accessible at: http://www.sciam.com/1999/0699issue/0699raghavan.html

Chalmers, M., K. Rodden and Dominique Brodbeck: The Order of Things: Activity-
Centered Information Access. In Proc. 7th Int'l Conf. on the World Wide Web, Brisbane,
April 1998, pp. 359-369.

Accessible at: http://www.dcs.gla.ac.uk/~ matthew/papers/preferred.pdf.

Available at Researchlindex (Citeseer): http://citeseer.nj.nec.com/chalmers98order.html

Chalmers, M.: When Cookies Aren't Enough: Tracking and Enriching Web Activity with
Recer. Jan van Eyck Academy Design Symposium: Preferred Placement: The Hit
Economy, Hyperlink Diplomacy and Web Epistemology, Amsterdam, October 1999.

111

Towards an Integrated Approach to Collaborative Web Usage

[Cheung]

[Claypool]

[Cockburn99a]

[Cockburn99b]

[Conklin1995]

[Cooley97]

[Cove]

[Crimson]
[Davison2000]

[Deakin]

[Dean]

[Dieberger]

[Dieberger1998]

[Dieberger1999]

[Dieberger2000]

[DOM]

[Efe]

[Flash]

[Flake]

Published as Preferred Placement:
Academie Editions, 2000, pp. 99-102.
Accessible at: http://www.dcs.gla.ac.uk/~ matthew/papers/ WWW7/www98.html
Available at Researchlndex (Citeseer):

http://citeseer.nj.nec.com/284189.html

Knowledge Politics on the Web, Jan van Eyck

Cheung, D.W., B. Kao and J. Lee: Discovering User Access Patterns on the World-Wide
Web. In Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD’97), February 1997. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/cheung97discovering.html

Claypool, Mark, Anuja Gokhale, Tim Miranda, Pavel Murnikov, Dmitry Netes and Matthew
Sartin: Combining Content-Based and Collaborative Filters in an Online Newspaper. In
Proceedings of ACM SIGIR Workshop on Recommender Systems, August 1999. Available
at Researchlindex (Citeseer): http://citeseer.nj.nec.com/claypool99combining.html

Andy Cockburn, Saul Greenberg, Bruce McKenzie, Michael Jasonsmith aund Shaun
Kaasten: WebView: A Graphical Aid for Revisiting Web Pages. In Proceedings of the
OZCHI’99 Australian Conference on Human Computer Interaction, Wagga Wagga
Australia, November 1999. Available at Researchlndex (Citeseer):
http://citeseer.nj.nec.com/cockburn99webview.html

Andy Cockburn and Saul Greenberg Issues of Page Representation and Organisation in
Web Browser's Revisitation Tools. In Proceedings of the OZCHI’99 Australian Conference
on Human Computer Interaction, Wagga Wagga Australia, November 1999.

Accessible via: http://www.cpsc.ucalgary.ca/grouplab/papers/index.html

J. Conklin: A survey of hypertext. Technical Report MCC Technical Report Number
STP356-86, Rev. 2, Software Technology Program, December 3, 1987. Available at
Researchlindex (Citeseer): http://citeseer.nj.nec.com/conklin95survey.html

Cooley, R., B. Mobasher and J. Srivastava: Web mining: Information and pattern
discovery on the world wide web. In ICTAI'97, Dec. 1997. Available at Researchlndex
(Citeseer): http://citeseer.nj.nec.com/cooley97web.html

J.F. Cove and B.C. Walsh: Online text retrieval via browsing. In Information Processing
and Management, Vol 24, No. 1, 1988. pp. 31-37.

Apache Crimson. Project Web page: http://xml.apache.org/crimson/

Brian D. Davison: Topical locality in the Web: Experiments and observations. Technical
Report DCS-TR-414, Department of Computer Science, Rutgers University, 2000.
Available at Researchlndex (Citeseer): http://citeseer.nj.nec.com/davison00topical.html

Neil Deakin: XUL Tutorial. XULPlanet.com, 2002.
Available at: http://www.xulplanet.com/tutorials/xultu/

Jeffrey Dean and Monika Henzinger. Finding related pages in the World Wide Web. In
Proceedings of the 8th International World Wide Web Conference, Toronto, Canada, May
1999. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/dean99finding.html

Dieberger, A.: Supporting Social Navigation on the World Wide Web. International
Journal of Human-Computer Studies, Vol. 46, No. 6, June 1997, pp. 805-825. Available
at Researchlindex (Citeseer): http://citeseer.nj.nec.com/andreas97supporting.html

Dieberger, A. and Frank, U: A City Metaphor to Support Navigation in Complex
Information Spaces. Journal of Visual Languages and Computing, Vol. 9, No. 6, 1998, pp.
597-622. Available at Researchlndex (Citeseer):

http://citeseer.nj.nec.com/261020.html

Andrease Dieberger, Kristina Ho6k: Applying principles of social navigation to the design
of shared virtual spaces. DRAFT VERSION from the WWW (no longer available at the
given URL!) (Previously) Available at:

http://www.mindspring.com/~ juggle5/Writings/Publications/ WebNet99.htm|

Andreas Dieberger, Peter Lonnqvist: Visualizing interaction history on a collaborative web
server. In Hypertext 2000 (San Anotnio, TX, 2000), ACM Press. Available at
Researchlndex (Citeseer):

http://citeseer.nj.nec.com/dieberger00visualizing.htm|

W3C Document Object Model (DOM).
Project Web page: http://www.w3.0org/DOM/

Kemal Efe, Vijay Raghavan, C. Henry Chu, Adrienne L. Broadwater, Levent Bolelli and
Seyda Ertekin: The Shape of the Web and Its Implications for Searching the Web. 2000.
Available at Researchlndex (Citeseer):

http://citeseer.nj.nec.com/efe00shape.html

Macromedia - Flash MX.
Product Web page: http://www.macromedia.com/software/flash/

Gary Flake, Steve Lawrence, and C. Lee Giles: Efficient identification of web communities.
In Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 150--160, Boston, MA, August 20--23 2000. Available at Researchindex

112

Towards an Integrated Approach to Collaborative Web Usage 113

[Gibson]

[Gibson1998b]

[GTRC1998]

[Goecks]

[Greenberg96]

[Greenberg]

[Hascoet1999]

[Hascoet]

[Herlocker]

[Hoque]

[J2SE13]

[J2SE14]

[JakartaORO]

[JAXP]

[JavaMail]

[JavaServlet]

[JavaServietJSPWeb]

[JIDOM]

[ISP]

[ISSE]

[ITidy]

[Kaasten]

(Citeseer):
http://citeseer.nj.nec.com/flake00efficient.html

David Gibson, Jon Kleinberg, and Prabhakar Raghavan: Inferring web communities from
link topology. In Proceedings of the Ninth ACM Conference on Hypertext and
Hypermedia, pages 225--234, June 1998. Available at Researchlndex (Citeseer):
http://citeseer.nj.nec.com/kleinberg98inferring.html

D. Gibson, J. Kleinberg, P. Raghavan P.: Structural Analysis of the World Wide Web.
WWW Consortium Web Characterization Workshop, November 1998. Available at:
http://www.w3.0rg/1998/ 11/05/wc-workshop/papers/kleinber1.html

Georgia Tech Research Corporation: GVU's Tenth WWW User Survey. Conducted October
1998. Available at: http://www.gvu.gatech.edu/user_surveys/, in particular: Web and
Internet Use / Problems Using the Web.

Goecks, J., and Shavlik, J.: Automatically labeling web pages based on normal user
interactions. In Proceedings of the IJCAl Workshop on Machine Learning for Information
Filtering, Stockholm, Sweden, July 1999. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/goecks99automatically.html

Greenberg, S. and M. Roseman: GroupWeb: A groupware web browser. In Proceedings
of the ACM Conference on Computer Supported Work (CSCW’96), Video Program, page
7, New York, Nov.16--20 1996. ACM Press. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/greenberg96groupweb.html

Greenberg, S.: Collaborative Interfaces for the Web. In C. Forsythe, E. Grose and J.
Ratner (editors), Human Factors and Web Development, Chapter 18, p241-254, LEA
Press, 1997. Available at Researchlndex (Citeseer):
http://citeseer.nj.nec.com/245748.html

Mountaz Hascoét: Navigation and interaction within graphical bookmarks. Rapport
interne du LRI, NA°1232, 1999. (Internal Report of the LRI, No. 1232, 1999.) Available
at Researchlndex (Citeseer):

http://citeseer.nj.nec.com/296052.html

Mountaz Hascoét: Integration of navigational aids in the user interface. Hypertext'00,
San Antonio, June 2000. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/323639.html

Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl: Explaining collaborative
filtering recommendations. In Computer Supported Cooperative Work, 2000. pp. 241-
250. Available at Researchindex (Citeseer):

http://citeseer.nj.nec.com/421045.html

Reaz Hoque: Java, JavaScript and plug-in interaction using client-side LiveConnect.
Netscape TechNote, 1999. Available at:
http://developer.netscape.com/docs/technote/javascript/liveconnect/liveconnect_rh.html

Java™ 2 Platform, Standard Edition, Version 1.3 (J2SE™).
Product Web page: http://java.sun.com/j2se/1.3/

Java™ 2 Platform, Standard Edition, Version 1.4 (J2SE™).
Product Web page: http://java.sun.com/j2se/1.4/
Jakarta ORO.

Project Web page: http://jakarta.apache.org/oro/

Java™ API for XML Processing (JAXP).
Product Web page: http://java.sun.com/xml/jaxp/

JavaMail™ API.
Product Web page: http://java.sun.com/products/javamail/

Danny Coward: Java™ Servlet Specification Version 2.3 Sun Microsystems, 2001.
Available from: http://www.jcp.org/aboutJava/communityprocess/final/jsr053/

Java™ Servlet Technology.
Product Web page: http://java.sun.com/products/servlet/

JDOM.
Project Web page: http://www.jdom.org/

Eduardo Pelegri-Llopart (edt.): JavaServer Pages™ Specification, Version 1.2. Sun
Microsystems, 2001.
Available from: http://www.jcp.org/aboutJava/communityprocess/final/jsr053/

Java™ Secure Socket Extension.
Product Web page: http://java.sun.com/products/jsse/

JTidy - HTML Parser and pretty-printer in Java.
Project Web page: http://lempinen.net/sami/jtidy/

Shaun Kaasten and Saul Greenberg: Integrating Back, History and Bookmarks in Web
Browsers. In Extended Abstracts of the ACM Conference of Human Factors in Computing
Systems (CHI'01), ACM Press, 2000.

Towards an Integrated Approach to Collaborative Web Usage

[Kahan]

[Kleinberg]

[Kleinberg99]

[Koch]

[Kraus]

[Kumar]

[Larson]

[Laurent]

[Li]

[Lieberman]

[Lifantsev2000]

[Loennqvist]

[Log4]]

[LOGML]

[NetObjects]

[Maglio]

[Maglio1997b]

[Maglio98]

Accessible at: http://www.cpsc.ucalgary.ca/grouplab/papers/index.html

Jose Kahan and Marja-Ritta Koivunen: Annotea: an open {RDF} infrastructure for shared
Web annotations. In World Wide Web, 2001. pp. 623-632.
Accessible at: http://citeseer.nj.nec.com/kahan01annotea.html

Jon Kleinberg: Authoritative sources in a hyperlinked environment. In Proceedings of the
9th ACM-SIAM Symposium on Discrete Algorithms, 1998. Available at Researchlndex
(Citeseer): http://citeseer.nj.nec.com/87928.html

Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew S.
Tomkins: The web as a graph: measurements, models and methods. In Proceedings of
the International Conference on Combinatorics and Computing, 1999. Available at
Researchlindex (Citeseer): http://citeseer.nj.nec.com/kleinberg99web.html

Andreas Geyer-Schulz, Stefan Koch and Georg Schneider: Virtual Notes: Annotations on
the WWW for Learning Environments. Proceedings of the Fifth Americas Conference on
Information Systems (AMCIS 1999), pp. 136-138, Milwaukee, WI, 1999. Available at
ResearchIindex (Citeseer): http://citeseer.nj.nec.com/263780.html

Michael Kraus: Browsing Context-Dependent Presentation of Web Pages. Available at:
http://www.pms.informatik.uni-
muenchen.de/lehre/oberseminar/markup/01ws02/browsingcontext/browsingcontext.html

Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Andrew Tomkins: Trawling the
web for emerging cybercommunities. Proc. 8th International World Wide Web
Conference, WWW8, 1999. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/ravi99trawling.html

R. Larson: Bibliometrics of the World Wide Web: An exploratory analysis of the
intellectual structure of cyberspace. Ann. Meeting of the American Soc. Info. Sci., 1996.
Accessible at http://sherlock.berkeley.edu/asis96/asis96.html

Laurent, D. and L. Vignollet. An annotation tool for web browsers and its applications to
information retrieval. In Proceedings of RIAO2000, Paris, April 2000.

Accessible at http://www.univsavoie.fr/labos/syscom/Laurent.Denoue/riao2000.doc.
Available at Researchlindex (Citeseer):
http://citeseer.nj.nec.com/denoue00annotation.html

Li, W-S., Q. Vu, E. Chang, D. Agrawal, Y. Hara, and H. Takano: PowerBookmarks: A
System for Personalizable Web Information Organization, Sharing, and Management. In
Proceedings of the Eighth International World-Wide Web Conference, May 1999.
Available at Researchlindex (Citeseer):

http://citeseer.nj.nec.com/260729.html

Lieberman, H.: Letizia: An Agent that Assists Web Browsing. In Proceedings of the
International Joint Conference on Articifial Intelligence (1JCAI’95), 1995. Available at
Researchlndex (Citeseer):

http://citeseer.nj.nec.com/lieberman95letizia.html

Maxim Lifantsev: Open Peer-Review as Web's Self-Organization Force. Technical Report
TR-78, ECSL, Department of Computer Science, SUNY at Stony Brook, Stony Brook, NY,
February 2000. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/353131.html

Peter Lonnqvist, Andreas Dieberger, Kristina H66k, Nils Dahlback: Usability Studies of a
Socially Enhanced Web Server. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/412343.html

Jakarta Log4J.
Project Web page: http://jakarta.apache.org/log4j/docs/

John Punin, Mukkai Krishnamoorthy and Gerard Uffelman (editors): LOGML (Log Markup
Language).
Accessible at: http://www.cs.rpi.edu/~ puninj/LOGML/draft-logml.html

NetObjects Press Release September 29, 1997: NetObjects Does It Again. NetObjects
TeamFusion Solves #1 Problem Facing Web Teams With First Roles-Based Team Site
Building Product.

http://www.netobjects.com/company/html/pra29sep97.html

P.P. Maglio and R. Barrett: On the Trail of Information Searchers. In Proceedings of the
Nineteenth Annual Conference of the Cognitive Science Society. Mahwah, NJ: Lawrence
Erlbaum, 1997. Available at Researchlndex (Citeseer):
http://citeseer.nj.nec.com/134365.html

P.P. Maglio and R. Barrett: How to build modeling agents to support web searchers. In
User Modeling: Proceedings of the Sixth User Modeling International Conference, pp. 5--
16, December 1997. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/maglio96how.html

P.P. Maglio and T. Matlock: Metaphors We Surf the Web By. To appear in Workshop on
Personalized and Social Navigation in Information Space, Stockholm, Sweden, 1998.
Available at Researchlindex (Citeseer):

114

Towards an Integrated Approach to Collaborative Web Usage

[Marais]

[Masseglia]

[Maxwell]

[McKinley]

[Pazzani]

[Pazzani99]

[Plaisant1999]

[Rafter]

[Ransom]

[Resnick1994]

[Pirolli]

[Pitkow]

[Shum1990]

[Spiliopoulou99a]

[Spiliopoulou99b]

[Srivastava]

[Tauscher]

[Terveen]

http://citeseer.nj.nec.com/187494.html

Hannes Marais and Krishna Bharat: Supporting cooperative and personal surfing with a
desktop assistant. In Proceedings of ACM UIST'97, 129--138, ACM, 1997. Available at
Researchlndex (Citeseer):

http://citeseer.nj.nec.com/marais97supporting.html

Masseglia, F., P. Poncelet and R. Cicchetti: An Efficient Algorithm for Web Usage Mining.
1999. Available at Researchlindex (Citeseer):
http://citeseer.nj.nec.com/399609.html

Maxwell, J. C.: Beyond Cooperation. 2002.
Available at: http://www.byroncenterchurch.org/john_maxwell/beyond_cooperation.htm

P. K. McKinley, A. M. Malenfant, and J. M. Arango: Pavilion: A Middleware Framework for

Collaborative Web-Based Applications. In Proceedings of the International ACM
SIGGROUP Conference on Supporting Group Work, pp. 179-188, Phoenix, Arizona,
November 1999. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/277477.html

Pazzani, M. and D. Billsus: Learning Collaborative Information Filters. In Machine
Learning: Proceedings of the 15th International Conference, 1998. Available at

Researchlndex (Citeseer):
http://citeseer.nj.nec.com/billsus98learning.html

Pazzani, M.: A Framework for Collaborative, Content-Based and Demographic Filtering.
Artificial Intelligence Review, 1999. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/pazzani99framework.html

Catherine Plaisant, Anne Rose, Gary Rubloff, Richard Salter, Ben Shneiderman: The
design of history mechanisms and their use in collaborative educational simulations.
Proceedings of the Computer Support for Collaborative Learning (CSCL) 1999
Conference., Palo Alto, CA: Stanford University, 348-359. Available at Researchlndex
(Citeseer): http://citeseer.nj.nec.com/plaisant99design.html

Rafter R., K. Bradley, B. Smyth: Passive Profiling and Collaborative Recommendation. In:
Proceedings of the 10th Irish Conference on Artificial Intelligence and Cognitive Science,
Cork, Ireland, September 1999. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/rafter99passive.html

Stephen Ransom, Xingdong Wu, Heinz Schmidt: Disorientation and Cognitive Overhead
in Hypertext Systems. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/96684.html

Paul Resnick, Neophytos lacovou, Mitesh Suchak, Peter Bergstrom, John Riedl:
Grouplens: An open architecture for collaborative filtering of netnews. In Proceedings of
ACM 1994 Conference on Computer Supported Cooperative Work, pages 175--186.
Chapel Hill, NC, 1994. Available at ResearchIindex (Citeseer):
http://citeseer.nj.nec.com/resnick94grouplens.html|

Pirolli, P., J. Pitkow and R. Rao: Silk from a Sow's Ear: Extracting Usable Structures from
the Web. Proc. CHI 96, ACM 1996, pp. 118-125. Available at ResearchIindex (Citeseer):
http://citeseer.nj.nec.com/pirolli96silk.htm]

Pitkow, J.: In Search of Reliable Usage Data on the WWW. In Proceedings of the 6th
International World Wide Web Conference, Santa Clara, CA 1997, pp. 451-462. Available
at Researchlndex (Citeseer):

http://citeseer.nj.nec.com/242362.html

Shum, S.B.: Real and Virtual Spaces: Mapping from spatial cognition to Hypertext. In
Hypermedia, Vol.2, No.2, 1990, pp. 133-158. Available at Researchlndex (Citeseer):
http://citeseer.nj.nec.com/shum90real.html

Spiliopoulou, M. and L. C. Faulstich: WUM: A Web Utilization Miner. In Proceedings of
EDBT Workshop WebDB98, Valencia, Spain, LNCS 1590, Springer Verlag, 1999. Available
at Researchlndex (Citeseer):

http://citeseer.nj.nec.com/spiliopoulou98wum.html

Spiliopoulou, M.: The laborious way from data mining to web log mining. Computer
Systems Science & Engineering, Vol. 14, No. 2. March 1999. Available at Researchlndex
(Citeseer): http://citeseer.nj.nec.com/158449.html

Srivastava, J., R. Cooley, M. Deshpande and P.-N. Tan: Web usage mining: Discovery
and applications of usage patterns from web data. SIGKDD Explorations, 1(2):12-23,
2000. Available at Researchlindex (Citeseer):
http://citeseer.nj.nec.com/srivastava0Oweb.html

Linda Tauscher and Saul Greenberg: How people revisit web pages: empirical findings
and implications for the design of history systems. In Int. J. Human-Computer Studies
47, pp. 97-137, 1997.

Accessible at http://ijhcs.open.ac.uk/tauscher/tauscher-pdf.html

Loren Terveen and Will Hill: Beyond Recommender Systems: Helping People Help Each
Other. In HCI In The New Millenium, Jack Carroll, ed., Addison-Wesley, 2001. Available at

115

Towards an Integrated Approach to Collaborative Web Usage

[Terzis]

[Togethersoft]
[Tomcat]
[Toyoda]

[Twidale1994]

[Twidale]

[W3CWCA]

[Wagner2002]

[Wasfi]

[White]

[Wood]

[XGMML]

[XLINK]

Researchlndex (Citeseer):
http://citeseer.nj.nec.com/terveen01beyond.html

Sotirios Terzis and Paddy Nixon: Building the next generation groupware: A survey of
groupware and its impact on the virtual enterprise. Department of Computer Science,
Trinity College Dublin, Ireland 1999. Available at ResearchIindex (Citeseer):
http://citeseer.nj.nec.com/terzis99building.html

Togethersoft. Company Web page: http://www.togethersoft.com
The Jakarta Site - Apache Tomcat. Project Web page: http://jakarta.apache.org/tomcat/

Toyoda, M. and M. Kitsuregawa: A Web Community Chart for Navigating Related
Communities. Tenth International World Wide Web Conference, 2001.
http://www10.0org/cdrom/posters/p1083/index.htm

Andy Colebourne, John Mariani, Tom Rodden, Michael Twidale, Steve Benford, Rob
Ingram, Dave Snowdon: Populated information terrains: supporting the cooperative
browsing of on-line information. Research Report: CSCW/13/1994, Centre for Research
in CSCW, University of Lancaster 1994. Available at Researchindex (Citeseer):
http://citeseer.nj.nec.com/213585.html

Michael B. Twidale, David M. Nichols and Chris D. Paice: Browsing is a Collaborative
Process. Information Processing & Management, 33(6), 1997, 761-83. Available at
ResearchIindex (Citeseer):

http://citeseer.nj.nec.com/twidale96browsing.html

World Wide Web Consortium: Web Characterization Terminology & Definitions Sheet.
Accessible at: http://www.w3.0org/1999/05/WCA-terms/

Holger Wagner: Tracking the Navigation Behavior of Web Communities. Accessible at:
http://www.pms.informatik.uni-
muenchen.de/publikationen/projektarbeiten/Holger.Wagner/projectThesis.shtml

Wasfi, A.M.: Collecting User Access Pattern for Building User Profiles and Collaborative
Filtering. In Proceedings of the 1999 International Conference on Intelligent User
Interfaces, pp. 57-64, 1999.

H.D. White and K.W. McCain: Bibliometrics. in Ann. Rev. Info. Sci. and Technology,
Elsevier, 1989, pp. 119-186.

Andrew Wood, Russell Beale, Nick Drew, and Bob Hendley: Hyperspace: a Worldwide
Web Visualiser and its implications for Cooperative Browsing and Agents. Submitted to
HCI95. Available at Researchlindex (Citeseer):

http://citeseer.nj.nec.com/148734.html

John Punin and Mukkai Krishnamoorthy (editors): XGMML (eXtensible Graph Markup and
Modeling Language).
Accessible at: http://www.cs.rpi.edu/~ puninj/ XGMML/draft-xgmmI.html

S. DeRose, E. Maler, D. Orchard (editors): XML Linking Language (XLink).
Accessible at: http://www.w3.org/ TR/ xlink.

116

	Title Page
	Meta-Information (Abstract, Keywords, Web)
	Acknowledgements
	Contents
	Chapter 1: Introduction
	Chapter 2: Relevant Concepts
	Chapter 3: Possible System Architectures
	Chapter 4: Features for a Prototype
	Chapter 5: Experiment and User Survey
	Chapter 6: Discussion
	Appendix A: System Implementation Documentation
	Appendix B: Full Feature-Matrix
	Appendix C: Experiment and User Survey Raw Materials
	Appendix D: Simple Report Format (SRF)
	Appendix E: Indices
	Appendix F: References

